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Abstract

This survey provides a comprehensive overview of recent advances in

distributed optimization and machine learning for power systems, par-

ticularly focusing on optimal power flow (OPF) problems. We cover dis-

tributed algorithms for convex relaxations and nonconvex optimization,

highlighting key algorithmic ingredients and practical considerations

for their implementation. Furthermore, we explore the emerging field

of distributed machine learning, including deep learning and (multi-

agent) reinforcement learning, and their applications in areas such as

OPF and voltage control. We investigate the synergy between opti-

mization and learning, particularly in the context of learning-assisted

distributed optimization, and provide the first comprehensive survey

of distributed real-time OPF, addressing time-varying conditions and

constraint handling. Throughout the survey, we emphasize practical

considerations such as data efficiency, scalability, and safety, aiming to

guide researchers and practitioners in developing and deploying effec-

tive solutions for a more efficient and resilient power grid.
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1. Introduction

The high penetration of distributed energy resources (DERs) introduces increased com-

plexity and uncertainty into power system operation, raising concerns about power quality,

voltage issues, stability, privacy, and cybersecurity (1–4). Distributed optimization and

learning techniques offer a promising solution by enabling localized decision-making and

parallel computation, potentially enhancing efficiency, data privacy, real-time response, and

resilience to cyberattacks and component failures, while also alleviating communication bot-

tlenecks. Machine learning (ML), including deep learning (DL) and reinforcement learning

(RL), has emerged as a powerful tool for handling nonlinearities and uncertainties inher-

ent in energy grids (5). The synergy between distributed optimization and ML holds the

potential to revolutionize power system operations.

DERs: Small-scale
power generation

and storage units

located near
consumers (e.g.,

solar panels, wind

turbines, batteries)

OPF: A fundamental

optimization

problem in power
system that

minimizes

generation cost while
meeting operational

constraints

This survey aims to be a valuable resource for researchers and practitioners across

power systems, control theory, optimization, and machine learning, offering insights into

the application of distributed optimization and ML techniques to power system problems,

particularly OPF. Building upon the foundation laid by existing comprehensive surveys on

distributed optimization (e.g., (1–3, 6)) and ML (e.g.,(5)), we delve into the intersection of

these fields with a focus on the following key aspects:

• A unified agent-based decomposition framework (Sec. 2) as a pedagogical tool to aid

newcomers in understanding initial formulations of various distributed optimization

algorithms for different power flow models (Sec. 3).

• Recent progress in addressing nonconvex problems (Sec. 3), focusing on methods

with practical benefits for power systems, such as ADMM variants (with a focus

on low per-iteration complexity, convergence acceleration, and handling non-ideal

communication), ALADIN, and other promising approaches (e.g., distributed interior

point and game-theoretic methods).

• ML Applications to distributed OPF, including distributed DL/RL (Secs. 4.1 and

4.2), multi-agent RL (MARL) (Sec. 4.3), and the synergy between optimization and

ML in learning-assisted distributed optimization (Sec. 4.4).

• The first comprehensive survey of distributed real-time OPF (RT-OPF) (Sec. 5),

highlighting connections to decomposition techniques (Sec. 3), the role of real-time

measurements in algorithm design, and challenges/advances in handling time-varying

conditions and constraints. We also explore potential cross-pollination with low per-

iteration cost algorithms such as ADMM.

Throughout this survey, we emphasize the practical challenges of applying distributed

optimization and ML techniques to power systems. We highlight how recent research ad-

dresses these challenges in various contexts, such as ensuring data efficiency and safety in

deep learning for OPF (Sec. 4.1), synthesizing unified themes from the MARL literature

in tackling non-stationarity, partial observability, and communication efficiency (Sec. 4.3),

and guaranteeing safety and stability constraints in distributed RT-OPF (Sec. 5). By

distilling key ideas from recent research advances, we aim to guide both researchers and

practitioners. We conclude by identifying key challenges and future research directions (Sec.

6), including scalability, resilience, privacy, safety, robustness, and cybersecurity, to inspire

further innovation in the field.

While this survey offers a comprehensive overview of the key areas outlined above,

it does not cover all aspects of distributed optimization and ML for power systems. We

refer readers to existing surveys for technical details on the original OPF formulation and
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its convex relaxations (e.g., (1, Sec. II-B), (7, Sec. II)), specific problem formulations for

distribution systems (e.g., volt/var control and retail markets) (3), distributed optimization

for discrete decision variables (6), and centralized RT-OPF methods (8). This focused scope

allows us to provide an in-depth analysis of recent advancements in distributed methods

while acknowledging the broader research landscape.

2. A Unified Distributed Formulation of OPF

2.1. Agent-based Decomposition and Consensus Formulation

G(N ,L): Power
network graph (N :
set of buses, L: set

of lines connecting
the buses)

Consensus
Constraint:∑

k∈K Akxk = b

enforces agreement

on shared elements
across agents, where

Ak are derived from

G. E.g., to enforce
x1[1] = x2[1], set

A1[1, 1] = 1 =
−A2[1, 1], and

b[1] = 0 (all other

entries in the first
row of Ak are zero)

Consider a power network represented as a graph G(N ,L). Let N be partitioned into

K subregions R1, . . . ,RK , each managed by a local agent k ∈ K := {1, . . . ,K}. Let xk

denote agent k’s local variables, including its internal variables and a locally maintained

estimate of shared/coupling variables with neighbors. This allows each agent to calculate

the influence of other agents on itself (e.g., line flows). We use xk[i] to denote the i-th entry

of xk, X[i, j] for the entry at the i-th row and j-th column of X, and X[I] for the principal

submatrix of X indexed by I. While each agent maintains its own estimate of the shared

variables, these estimates should ensure consensus among neighboring agents:

min
{xk}k∈K

∑
k∈K

fk(xk) 1a.

s.t.
∑
k∈K

Akxk = b, 1b.

xk ∈ Xk ∀k ∈ K, 1c.

where fk(xk) is the local cost function. The local feasibility set Xk may include line flow and

power balance equations, as well as limits on voltage magnitudes and generator outputs.

The consensus constraint (Eq. 1b) ensures consistency among the shared variables. Without

this constraint, or assuming the shared variables are fixed or measured by each agent, the

problem decouples into K independent subproblems.

SDP Relaxation:
Relax the rank-1
constraint on the

voltage matrix

X = V V ∗ to a PSD
constraint (X ⪰ 0)

Rank-1 Solution: A
solution X∗ to the
relaxed SDP

problem such that

rank(X∗) = 1,
implying X∗ = V V ∗

for some voltage
vector V (unique up

to a global phase
shift), thus solving
the original AC OPF
problem

2.1.1. Distributed Nonconvex Formulation. In region-based decomposition for AC OPF

(e.g., (9)), the local variable xk includes the real/reactive power generation, pi and qi, and

complex voltage vi ∈ C for all buses i ∈ Rk; it also includes “local copies” of voltage

vj for all boundary buses j ∈ δ(Rk), where δ(Rk) is the set of buses outside of, but

connected to, subregion Rk through tie-lines. The local objective fk and constraint Xk can

be nonconvex (9). In contrast, component-based decomposition (10, 11) considers every

network component (generators, transformers, loads, transmission lines, etc.) as an agent.

2.1.2. Distributed SDP Relaxation. The semidefinite programming (SDP) relaxation of the

OPF problem introduces a matrix variable X ∈ H|N| (where H is the set of n×n Hermitian

matrices and |N | is the number of buses) to represent the outer product of the voltage

phasors, i.e., X = V V ∗, where V ∈ C|N| is the vector of complex numbers of size |N |.
The matrix X is symmetric and positive semidefinite (PSD) by construction. The SDP

relaxation drops the rank-1 constraint on X, replacing it with the PSD constraint X ⪰
0. For the distributed formulation, each region can correspond to a “bag” of nodes in

a tree/chordal/clique decomposition of G (12). For each agent k ∈ K, the local variable

xk is the principal submatrix X[Rk] ∈ H|Rk| of X, indexed by the buses in subregion
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Rk. Within xk, the consensus variables are the entries corresponding to the buses that

appear in neighboring bags of the tree decomposition, i.e., separator sets. The consensus

constraint (Eq. 1b) ensures consistency of these entries across bags. If the optimal solution

to the SDP relaxation is rank-1, it solves the original OPF problem, i.e., the relaxation is

exact. In practice, even with higher-rank solutions, near-optimal solutions to the OPF can

often be constructed. The local constraint set Xk, with the addition of the PSD constraint

X[Rk] ⪰ 0, is convex under the SDP relaxation.

Chordal Sparsity: A
property of power

networks’ graph

structure that
enables efficient

decomposition of the

OPF problem’s SDP
relaxation into

smaller, coupled

subproblems over a
tree, facilitating

scalable distributed
computation

2.1.3. Distributed SOCP Relaxation. In the second-order cone programming (SOCP) re-

laxation, the power flow equations are reformulated using branch power flows and voltage

magnitudes, which can be derived from the SDP relaxation by imposing additional con-

straints on the structure of X while removing the computationally demanding constraint

X ⪰ 0. SOCP constraints have a simpler structure and can be handled by specialized

solvers. For radial (tree topology) networks, the SOCP relaxation is exact under mild con-

ditions (13). For a radial network, each bus is an agent with local variable xk including

the squared voltage magnitude and the net complex power injection at bus k, as well as

the branch power flow and the squared magnitude of the branch current from bus k to its

ancestor; the local variable xk also includes a local copy of the variables from its neighbors.

The local constraint set Xk includes the SOCP constraints.

Synchronous/
Asynchronous
Updates:
Synchronous: agents

update
simultaneously using

a global clock; easier

to analyze.
Asynchronous:

agents update
independently using

local clocks; flexible

and scalable for
distributed systems

Event-Triggered
Schemes: Updates
occur only when

triggered by certain

events, reducing
communication

overhead

Time-Varying
Communication
Graphs:
Communication
links change over

time, modeling

dynamic networks
and potential

failures

2.1.4. Communication Topology and Protocol. The communication topology, modeled as a

directed/undirected graph, determines how agents exchange information. Common topolo-

gies include distributed networks with m-hop neighbors, where agents communicate only

with neighbors within m hops, star networks with a central coordinator, and hierarchical

networks with communication occurring between different levels. Information exchange pro-

tocol defines the type, frequency, and timing of shared data (e.g., primal/dual variables) and

may involve synchronous/asynchronous updates, event-triggered schemes, and time-varying

communication graphs (2, Sec. 4).

3. Non-Convex Distributed Optimization Techniques

3.1. ADMM and Variants

The distributed OPF formulation (Eq. 1) can be interpreted as a multi-block extension of

the classical two-block ADMM, extending it to handle K blocks of variables {xk}k∈K with

separable objectives {fk}k∈K and consensus constraint (Eq. 1b). While ADMM is naturally

suited to address both local and consensus constraints, its direct multi-block extension may

not be convergent (14), necessitating further modifications.

Problem 1 is suitable for primal decomposition, since fixing coupling variables decouples

the problem into subproblems. Thereby, it can be reformulated as a two-block problem:

min
x,z

∑
k∈A

fk(xk) s.t. Akxk − zk = bk, xk ∈ Xk, ∀k ∈ K,
∑
k∈K

zk = 0, 2.

where we introduce the auxiliary variables z = {zk}k∈K to facilitate consensus update.

This allows exploiting classical ADMM on the blocks x and z, with the primal update of x

naturally decomposing across agents k ∈ K. Also, the slack z update admits a closed-form

solution, i.e., zt+1
k = Akx

t+1
k − bk −dt+1, for all k ∈ K, where dt+1 = 1

K

(∑
k∈K Akx

t+1
k − b

)
4 Al-Tawaha, Cibaku, Park, Lavaei, and Jin



is the average violation of the coupling constraint (Eq. 1b). The primal update is:

xt+1
k = arg min

xk∈Xk

fk(xk) + (λt)⊤(Akxk) +
ρ

2
∥Akxk −Akx

t
k + dt∥2, ∀k ∈ K, 3.

which can be performed in parallel by agents, and the dual update is: λt+1 = λt + ρdt+1,

where λk are the dual variables associated with (Eq. 1b) and ρ > 0 is a penalty parameter.

Problem 1 is also amenable to dual decomposition, because relaxing the coupling con-

straint decouples the problem into subproblems. We introduce Lagrange multipliers λ and

formulate the Lagrangian function: L(x, λ) =
∑

k∈A fk(xk)− λ⊤(
∑

k∈A Akxk − b) and the

resulting dual problem: minλ

∑
k∈A f∗

k (A
⊤
k λ)− b⊤λ, where f∗

k (z) = supxk
{z⊤xk − fk(xk) :

xk ∈ Xk} is the Fenchel conjugate of fk under the assumption of a bounded convex subset

Xk. This problem is well known as consensus optimization, where the sum of K objectives

is coupled through the consensus variable λ, and can be handled by the classical two-block

ADMM via introducing local copies of λ = {λk}k∈K and linking variables ζ = {ζij}(i,j)∈L:

min
λ,ζ

∑
k∈A

(
f∗
k (A

⊤
k λk)−

1

K
b⊤λk

)
s.t. λi = ζij , λj = ζij , ∀(i, j) ∈ L. 4.

Applying ADMM yields the dual consensus ADMM implementation (15), with the primal

updates: xt+1
k = argminxk∈Xk fk(xk) +

1
4ρ|Nk|

∥Akxk − 1
K
b − wt

k + ρ
∑

j∈Nk
(λt

j + λt
k)∥2

and λt+1
k = 1

2ρ|Nk|
(Akx

t
k − 1

K
b−wt

k) +
1

2|Nk|
∑

j∈Nk
(λt

j + λt
k), and the dual update wt+1

k =

wt
k + ρ

∑
j∈Nk

(λt
k − λt

j). This algorithm supports parallel computation among the agents

and networked communication schemes.

The above variants of multi-block ADMMs, known as parallel ADMM (16, Ch. 3) and

dual consensus ADMM (15), have been applied to cost allocation in peer-to-peer electricity

markets (17), electrical vehicle (EV) coordination (18), black-start and parallel restoration

(19), and distributed OPF (20). Other multi-block modifications include: 1) Proximal

regularization: Adds terms of the form 1
2
∥xk − xt

k∥2Pk
to subproblems, with Pk ⪰ 0. For

example, proximal Jacobian ADMM (21) requires Pk ≻ ρ(K − 1)A⊤
k Ak to be sufficiently

large for convergence. Since the proximal coefficient matrices Pk are generally required

to be linearly growing with the number of agents K, a slower convergence is likely for

larger problems. 2) Prediction-correction ADMM: Variants such as Jacobian ADMM with

correction step (22) generate a prediction using Jacobian ADMM and then use correction

steps for convergence with O(1/t) iteration complexity. 3) Block-wise ADMM: Variants

such as block-wise ADMM (23) artificially split variables into two groups and apply two-

block ADMM, often with smaller proximal coefficients than proximal Jacobian ADMM,

potentially leading to faster convergence. This is demonstrated in coordinated control for

microgrid clusters (24).

Jacobian
Decomposition:
Enables parallel
updates of agent

variables

(contrasting with
sequential updates,

a.k.a. Gauss-Seidal,

in classical ADMM),
but is generally less

stable and may

require proximal
methods to control

the approximation
error to the joint

primal update

3.1.1. Accelerated ADMMs. Accelerated ADMMs aim to improve the convergence rate of

classical ADMM, implying fewer iterations and communications. One notable example is

fast ADMM (25), which introduces an interpolation step based on the Nesterov acceleration

technique and achieves an O(1/t2) convergence rate for strongly convex problems, improving

upon the O(1/t) rate of classical ADMM. However, convergence analysis for more general

problems remains open. As noted in (26), existing techniques modify the primal and dual se-

quences in the iterative process, uniformly characterized by ω̂t+1 = acc(ωt+1, ωt, ωt−1, . . .),

where ωt = {xt, λt} is the stack of primal and dual variable updates generated by an ADMM
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Optimization Algorithms as Dynamical Systems

Many optimization algorithms can be viewed as discretizations of continuous-time dynamical systems, offer-

ing insights into algorithm design, convergence analysis, and real-time control (Sec. 5). For example, gradi-

ent descent, xt+1 = xt − α∇f(xt), approximates gradient flow: ẋ(t) = −∇f(x(t)). If f is convex, the Lya-

punov function V(x) = f(x)−f(x∗) (with x∗ ∈ argmin f(x)) has V̇(t) = ∇f(x)⊤ẋ(t) = −∇f(x)⊤∇f(x) ≤ 0,

ensuring monotonic convergence. Reverse engineering an optimization algorithm involves choosing param-

eters and discretization schemes (e.g., forward Euler, Runge-Kutta) to balance accuracy and complexity.

Integral quadratic constraints (IQC) from robust control theory can be used to analyze and design iterative

algorithms (32). For constrained problems (min f(x) s.t. x ∈ X ), projected gradient methods can be mod-

eled by the differential inclusion: ẋ ∈ −∇f(x)−NX (x), where NX (x) is the normal cone to ensure feasibility.

Similar dynamics exist for other constrained methods, including primal-dual methods with evolving primal

and dual variables. Convergence analysis often uses generalized derivatives due to non-uniqueness of V̇(t).

or its variant at iteration t and “acc” represents an acceleration technique. A guard con-

dition ensuring monotonic decrease of the combined residual is introduced for convergence

(26). The second-order information of the dual function is exploited with a Newton step

in (27) to accelerate the dual variable update. Connections have been drawn between

accelerated ADMM variants and continuous-time dynamical systems, establishing conver-

gence rates through Lyapunov analysis (28). Moreover, a second-order dynamical system

with vanishing damping has been shown to yield various inertial parameter rules, including

Nesterov acceleration, under suitable time discretization (29). Accelerated ADMMs have

demonstrated effectiveness in applications such as distributionally robust economic dispatch

(30) and AC/DC hybrid power networks (31).

Per-Iteration
Complexity:
Computational effort

per algorithm
iteration. In

ADMM, this is the

effort spent by each
agent solving its

subproblem before
communicating with

others. Low

per-iteration
complexity often

means one or few

gradient steps,
function evaluations,

or closed-form

solutions.

Non-Ideal
Communication:
Communication
between agents or

with a coordinator is
subject to delays,

packet loss, noise, or

other imperfections.

3.1.2. ADMMs with Low Iteration Complexity. ADMM variants aim to reduce per-iteration

complexity by using approximations and proximal terms (e.g., ∥x−xt∥2 to control approx-

imation accuracy). Linearized ADMM optimizes local linear approximations, leading to

simpler updates such as projected gradient steps or proximal mappings (33, 34). For non-

convex problems, bounded primal and dual updates are typically required to construct a

sufficiently decreasing and lower bounded Lyapunov function (34). Stochastic ADMM per-

forms gradient-like iterates with noisy gradients of the augmented Lagrangian (AL) function

(33), which is useful when explicit functions are unavailable; however, the high variances

of stochastic gradients lead to a convergence rate gap: O(1/
√
t) for stochastic ADMM

versus O(1/t) for its deterministic counterpart. To address this issue, variance reduction

techniques have been proposed, including a stochastic path-integrated differential estima-

tor (35), further combined with acceleration techniques (36). For instance, (37) provides

a unified framework for inexact stochastic ADMM covering several well-known algorithms.

Convergence of these inexact variants usually requires the linearized objective components

to be Lipschitz differentiable, as well as sufficiently large proximal coefficients to bound the

errors caused by inexact updates.

3.1.3. ADMMs with Non-Ideal Communications. Modern power systems are susceptible to

random link failures due to factors like network congestion, infrastructure failures, signal

6 Al-Tawaha, Cibaku, Park, Lavaei, and Jin



interference, cyber attacks, and intentional noise added for privacy. The study (20) found

that ADMM performance in unbalanced distribution networks degrades significantly under

high levels of communication failure and noise. To address this, several ADMM algorithms

have been developed, incorporating flexible agent activation mechanisms or asynchronous

updates. Asynchronous updates improve computational efficiency by reducing idle time

caused by delays or packet losses (38). In these schemes, a master node sets a maximum

tolerable delay τ for each worker, enforced by a delay counter. The master proceeds with

updates upon receiving new information from a sufficient number of workers, while ensuring

remaining workers do not exceed the delay bound. There is often a trade-off between

the number of iterations and waiting time, influenced by the delay bound τ and partial

synchronization mechanism (38). Communication problems can be modeled as a time-

varying network with asynchronous updates (39). An asynchronous dual decomposition

algorithm has been proposed and compared favorably with existing methods in coordinating

DERs under communication asynchrony and computation errors (40). Additionally, a data

server with its own clock cycles to handle asynchronous data exchange for local consensus

has been used in (41) to replace the central aggregator in (38), potentially facilitating easier

integration into communication networks.

3.1.4. Other Considerations. A proximal ADMM variant has been developed that allows

each agent to select its step size autonomously based solely on local information, inde-

pendent of the communication topology (42). A scaled dual descent approach within the

AL framework has been proposed to handle more general nonlinear equality constraints,

offering improved theoretical complexity guarantees compared to previous methods (43).

3.2. Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)

ALADIN (44) addresses nonconvex problem (Eq. 1) by solving decoupled problems in

primal variables, similar to ADMM, while also requiring an approximation of the constraint

Jacobian and Hessian to solve a coupled Quadratic Programming (QP) problem.

Consider local constraints Xk = {xk : hk (xk) = 0, gk (xk) ≤ 0} in (Eq. 1), where hk

and gk are assumed to be twice continuously differentiable. The key steps involve solving

decoupled problems to either local or global optimality for each agent k ∈ K:

min
xk

fk(xk) + ⟨Akxk, λ⟩+
ρ

2
∥xk − xt

k∥2Σk
s.t. gk(xk) ≤ 0, hk(xk) = 0, 5.

where ρ ≥ 0 is a penalty parameter, Σk ≻ 0 is a weighting matrix, and λ is the dual

variable. After solving (Eq. 5), the approximations of the constraint Jacobian ∇g̃k(x
(t+1)
k )

and Hessian Hk ≈ ∇2
xkxk

(fk(x
t
k) + γ⊤

k gk(x
t+1
k ) + µ⊤

k hk(x
t+1
k )) are computed, where γk and

µk are the Lagrange multipliers; compared to ADMM, the use of more accurate Hessian

and Jacobian approximations can reduce iterations at the cost of increased per-iteration

complexity. Subsequently, a coupled QP is solved at a central node:

min
∆xk

∑
k∈K

1

2
∥∆xk∥2Hk

+⟨∆xk,∇fk⟩+λ

(∑
k∈K

Ak(x
t
k+∆xk)−b

)
+
ρ

2

∥∥∥∥∥∑
k∈K

Ak(x
t
k+∆xk)−b

∥∥∥∥∥
2

2

s.t. ∇g̃(xt
k)∆xk = 0.

Finally, the primal and dual variables are updated as xt+1
k = xt

k + ∆xk and λt+1 = λt +

ρ
(∑

k∈K Akx
t+1
k − b

)
. Under mild assumptions, ALADIN converges to a local minimizer of

www.annualreviews.org • Distributed Optimization and Learning for Power Systems 7



the nonconvex problem from any feasible starting point when combined with the proposed

globalization strategy (44). Under suitable conditions, it achieves a quadratic or superlinear

local convergence rate (44), matching centralized sequential QP methods.

ALADIN has been applied to AC OPF and power system analysis (45, 46), AC/DC

hybrid systems (47, 48), and heterogeneous power systems in both single-machine numerical

simulations (46) and geographically distributed environments (49). However, its increased

per-step communication and scalability issues, particularly with inequality constraints, are

drawbacks; (47) shows an improved ADMM outperforms ALADIN in scalability for the

AC OPF problem. To address these, (45) employs approximation methods for Hk using

blockwise and damped BFGS updates. Bi-level distributed ALADIN (50) eliminates the

central coordinator in the coupled QP step by solving it with decentralized ADMM or

conjugate gradient. Recent advancements include improved computing times for large-

scale AC power flow problems using second-order corrections for linearization errors of

active constraints in (Eq. 5) (51). Open-source software for distributed and decentralized

ALADIN is also available (52).

3.3. Distributed Interior Point Method

The Distributed Interior Point Method (IPM) is a promising approach for solving the large-

scale nonconvex OPF problem. To overcome the limitations of extensive communication

and central coordination of existing distributed second-order methods (53), distributed IPM

reformulates (Eq. 1) by replacing inequality constraints with logarithmic barrier terms in

the objective function:

min
{xk,sk}k∈K

∑
k∈K

(
fk(xk)− µ

mk∑
i=1

ln(sk,i)

)
s.t. hk(xk) = 0, gk(xk) + sk = 0, sk ≥ 0, ∀k ∈ K, and (Eq. 1b)

6.

where µ > 0 is the barrier parameter, sk = {sk,j}j=1,...,mk ∈ Rmk are the slack variables,.

The main challenge in decentralization is solving the coupled linear system arising from

the Karush-Kuhn-Tucker (KKT) conditions of (Eq. 6) in each Newton step. In (54),

an incremental-oriented ADMM variant is presented for distributed OPF with discrete

variables, consisting of outer-loop iterations based on an extended IPM and inner-loop

iterations based on ADMM. The outer-loop extended IPM forms a regional linear correction

equation with coupling relationships between neighboring areas, enabling the use of ADMM

to compute primal-dual directions in a distributed manner. Another approach involves two-

stage optimization, decomposing the power network into a master network and subnetworks

(55). By smoothing subproblems with a barrier term, the second-stage value function

becomes differentiable with respect to the master problem variables, allowing for efficient

nonlinear solvers using primal-dual IPMs, which offer fast local convergence.

3.4. Game-Theoretic Methods

Potential games (PGs) are applicable for power systems due to their ability to model indi-

vidual interests, handle nonconvex objectives and constraints, and guarantee convergence

to Nash equilibrium (NE) under certain learning dynamics (57). In an OPF context,

a potential function may incorporate generation costs and power balance penalties, e.g.,

ϕ(pgk, p
g
−k) = −

∑
k∈K fk(p

g
k)−γ

∣∣pd + ploss −
∑

k∈K pgk
∣∣, where γ is a penalty factor, pgk and
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Game-Theoretic Perspectives on Distributed Optimization

Distributed NE seeking aims to find an NE where no agent can unilaterally improve its utility uk(xk, x−k)

(the negative of its cost function). Here, xk are the agent’s local variables (including estimates of shared

variables), and x−k are other agents’ variables. In a potential game, with a properly designed potential

function ϕ(x), the NE may correspond to the solution of the distributed optimization problem with the added

consensus constraint to ensure consistent estimates of shared variables. Distributed NE seeking algorithms,

such as leader-following consensus and passivity-based approaches, offer unique insights (56), including the

strategic behavior of agents, the potential for incentive alignment, robustness against adversarial behavior,

and accommodation of private and shared nonlinear constraints. Continuous-time NE seeking is particularly

relevant for distributed RT-OPF (Sec. 5).

pg−k are the active power outputs for generator k and all others, respectively, pd is the total

demand, and ploss is the total transmission loss. The utility function for each generator,

uk

(
pgk, p

g
−k

)
= ϕ

(
pgk, p

g
−k

)
−ϕ

(
0, pg−k

)
, aims to minimize individual cost while contributing

to collective cost reduction and power balance. Game-theoretic methods have shown faster

convergence and lower generation costs compared to some heuristics (57, 58). Notably,

PGs offer a realistic representation of interactions among agents with potentially conflict-

ing objectives, and handle non-cooperative behavior through mechanism design, aligning

individual interests with the global objective. This is particularly relevant for integrating

DERs (59). The local generalized NE concept and variational equilibrium proposed in

Potential Game: A

multiplayer game
where there exists a

function (i.e.,

potential function) ϕ
such that:

uk(x
′
k, x−k)−

uk(x
′′
k , x−k) =

ϕ(x′
k, x−k)−

ϕ(x′′
k , x−k) for every

k ∈ K, x′
k, x

′′
k ∈ Xk,

x−k ∈
∏

j ̸=k Xj .
(59) address nonconvexities from AC power flow constraints in a non-cooperative setting.

Distributed NE seeking algorithms, especially under partial decision information, has close

connection to distributed optimization algorithms (56).

4. Distributed Machine Learning Techniques

4.1. Deep Learning for Distributed OPF and Related Problems

DL for distributed OPF often uses direct prediction approaches to approximate the map-

ping from grid conditions to control setpoints, known as solution functions (see, e.g., (60)

for a connection to MPC and DL). Simulations demonstrate significant speedup with minor

optimality loss and constraint violation (61). Supervised learning with penalty terms (61)

or primal-dual methods (62) ensure feasibility. Decentralized approaches with local ML

models, trained to predict the optimal setpoint based on local measurements, are developed

(63). Incorporating uncertainty is vital due to renewable generation variability. This is

addressed through chance constraints (64) or conditional value-at-risk (CVaR) (65), which

provides a convex surrogate for chance constraints. Graph neural networks (GNNs) incor-

porate grid topology (66), with robustness against anomalous and missing measurements

(67). Attention networks have been employed alone (68) or with Convolutional Neural Net-

works (CNNs) (69). Post-training, GNNs and CNNs enable distributed predictions using

Solution Function:
A mapping π(z, θ)
that finds the

optimal decision x

minimizing the
objective function

f(z,θ)(x) over

feasible set X(z,θ),
both parameterized

by z and θ.

local computations based on limited neighboring information. Data-driven methods depend

heavily on training data quality and coverage, with out-of-sample robustness and constraint

satisfaction being key challenges due to frequent topology changes and DER uncertainty.
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4.1.1. Data Efficiency and Scalability. Sobolev training enhances data efficiency by incor-

porating sensitivities of the OPF solution function into the regression process (70). In-

stead of the “OPF-then-learn” paradigm, decentralized policies can be directly integrated

into the OPF problem (“OPF-and-learn”). For instance, (62) learns distributed nonlinear

inverter controls using a deep neural network (DNN) with individualized inputs and par-

tially connected layers, formulated under a chance-constrained framework and solved with

gradient-free learning. To address scalability, (71) proposes a novel distributed approach

that decomposes the power network into regions, first predicting coupling variables, then

training region-specific models in parallel. This approach scales to large networks (up to

6700 buses) while maintaining feasibility and reducing training time.

4.1.2. Constraint Satisfaction. Feasibility can be ensured through various approaches: 1)

Restricted feasible region during training: Modifying the OPF feasible region to encourage

models to produce strictly feasible solutions (72). 2) Active set prediction: Predicting active

constraints and solving a reduced DC OPF problem (73). 3) Physics-informed models:

Incorporating physical constraints into the loss function via penalty terms (67–69). 4)

Feasibility restoration: Post-processing or projection onto the feasible space using power

flow solvers, e.g., predict-and-reconstruct in (61). 5) Implicit layers and gauge mappings:

Embedding feasibility restoration within the model using projection (74) or gauge (one-to-

one) mappings (75). 6) Control-theoretic safe synthesis: Applying control-theoretic tools to

define a feasible set for neural network weights that satisfy constraints (76). Each approach

has trade-offs. Methods 1 and 2 simplify learning but may struggle with complex feasible

spaces or yield infeasible solutions. Methods 3 and 4 effectively reduce violations but

lack strict guarantees. Techniques 5 and 6 offer principled feasibility embedding but can

be computationally expensive or rely on assumptions. Most methods are agnostic to DL

architecture and can be used to learn distributed policies with sparse connections (62).

4.1.3. Perspective from Algorithm Unrolling. Deep learning architectures, such as DNNs,

CNNs, GNNs, or recurrent neural networks (RNNs), can be viewed as the repeated applica-

tion of an operator F (l) across multiple layers l ∈ {1, ..., nl}, i.e., F (nl) ◦F (nl−1) ◦ · · · ◦F (1).

This is reminiscent of iterative algorithms. For a simple illustration, the iterative algo-

rithm x(l+1) = σρ/κ(x
(l) + 1

κ
B⊤(b−Bx(l))) can be used to solve min 1

2
∥Bx− b∥22 + ρ∥x∥1,

where σρ/κ is the element-wise soft-thresholding function σθ(x) = sign(x)max(0, |x| − θ)

with θ = ρ/κ and κ usually taken as the largest eigenvalue of B⊤B. We can treat each

iteration as an instantiation of the operator FISTA(x
(l)) = σθ(l)(W

(l)
1 x(l−1)+W

(l)
2 b), where

(θ(l),W
(l)
1 ,W

(l)
2 ) are learnable parameters to train from data with x(0) as the initial point.

This concept broadly connects to algorithm unrolling (77), where optimization algorithms

are unrolled into DL architectures. By connecting to algorithm unrolling for algorithms

such as ADMM (78), we can potentially develop distributed optimization algorithms that

leverage the expressiveness and learning capabilities of DL models.

Algorithm Unrolling:
Interpreting deep
learning

architectures as

unrolled versions of
iterative algorithms,
where each layer

corresponds to an
iteration

4.2. Distributed RL for OPF and Related Problems

Distributed RL is well-suited for power system optimizations such as OPF, which involve

high-dimensional spaces, complex constraints, and real-time decisions. In distributed RL,

Markov Decision
Process (MDP): A
tuple (S,A, P,R, γ),

with S: state space,
A: action space, P :

transition
probability function,
R: reward function,

γ: discount factor

K agents interact with the environment in parallel. At time step t, agent k observes state

skt ∈ S, selects action ak
t ∈ A according to policy πθk , where θk represents the parameters
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of the policy, and receives reward rkt = R(skt , a
k
t ). The environment transitions to state skt+1

according to P (skt+1|skt , ak
t ). The goal is to find a set of policies {πk}Kk=1 that maximizes

the expected cumulative discounted reward:

V ({πk}Kk=1) = Eτ∼p(τ |{πk}Kk=1)

[
K∑

k=1

∑
t

γtrkt

]
, 7.

where τ = {skt , ak
t , r

k
t }k,t is the set of trajectory of states, actions, and rewards for all agents,

and p(τ |θ1, . . . , θK) is the probability distribution over trajectories induced by {πθk}
K
k=1.

Various distributed RL algorithms, such as distributed Q-learning (79) and actor-critic

methods (80), enable efficient policy updates through shared experiences. For instance,

IMPALA (Importance Weighted Actor-Learner Architecture) (80) uses an actor-learner ar-

chitecture with parallel data generation and centralized policy learning, reducing training

time and enabling scalability to thousands of machines without sacrificing data efficiency.

PQL (parallel Q-learning) (79) parallelizes key RL components, e.g., data collection, pol-

icy learning, and value learning, enhancing network update frequency. Recent work (81)

suggests that using a single policy for parallel exploration can be effective, potentially

simplifying the coordination of exploration policies. Recent studies (31, 82) demonstrate

distributed RL’s potential in complex OPF scenarios. (82) addresses sparse rewards and ex-

ploration through parallel exploration for Transient SC OPF. (82) addresses sparse rewards

and exploration through parallel exploration for Transient Security-Constrained OPF. (31)

introduces a scalable hierarchical RL framework for complex optimizations.

Applying distributed RL to OPF requires consideration of the parallel interaction as-

sumption, as agents can influence each other’s states and rewards. This setup can be

relevant in simulation or weakly decoupled systems, but care is needed to avoid potential

divergence due to distributional shifts (83). Despite these challenges, insights from dis-

tributed RL, such as parallelization, stable learning, and simplified exploration, can inform

the development of realistic RL-based solutions for power systems.

Distributional Shift:
A change in the data
distribution

encountered by a

model, compared to
training. In RL, this

can arise from

environment
changes, policy

updates, or
multi-agent

interactions, leading

to degraded
performance or

instability.

Connected to
nonstationarity and

out-of-distribution

generalization.

4.3. Multi-Agent RL for Distributed OPF and Related Problems

MARL has shown promise for distributed optimization/control problems, where multiple

agents coordinate actions in a shared environment (84). This can be formalized as Decen-

tralized Partially Observable MDP (Dec-POMDP) (85).

Dec-POMDP:
Extends MDP to
multi-agent settings

with partial
observability. Key

additions:

A = ×kAk: joint
action space,

{Rk}k∈K:

agent-specific
rewards, {Ok}k∈K
individual

observation spaces,
O: observation

probability function

In a fully cooperative Dec-POMDP, agents share a reward function and seek a joint

policy π = {πk}k∈K that maximizes the expected discounted cumulative reward (Eq. 7)

(84). In contrast, competitive or mixed Dec-POMDPs involve agents with individual reward

functions Rk aiming to maximize their own expected discounted return Vk(πk, π−k) =

Eτ∼p(τ |{πk}Kk=1)
[∑

t γ
trtk
]
while considering others’ policies π−k. The resulting joint policy

π∗ = {π∗
k}Kk=1 represents a Nash equilibrium, where π∗

k ∈ argmaxπk Vk(πk, π
∗
−k).

Most works assume fully cooperative agents (84, 86–93), with a few considering coor-

dination signal design (89, 94). Non-cooperative setting in power system applications has

been examined in online feedback equilibrium seeking (56, 57, 95).

Key challenges in MARL include nonstationarity, scalability, and partial observability

(96, 97). Nonstationarity arises from concurrent policy updates, while scalability issues stem

from the combinatorial growth of the joint action space. Partial observability necessitates

efficient communication and coordination, as well as robustness. These challenges are par-

ticularly relevant for power systems, where agents (e.g., DERs, generators) with individual
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objectives, constraints, and limited information must coordinate actions. Nonstationarity

and scalability can hinder convergence to an optimal solution, while partial observability

may lead to suboptimal local decisions misaligned with the collective goal.

4.3.1. Dealing with Nonstationarity. Centralized Training for Decentralized Execution

(CTDE) allows agents to share information during training but act based on local ob-

servations during execution (87–89, 93). MADDPG (Multi-Agent Deep Deterministic Pol-

icy Gradient) (98), a popular CTDE method, uses a centralized critic conditioned on all

agents’ observations and actions, while the actor only accesses local information. Although

primarily applied to cooperative settings (e.g., (88)), MADDPG can also handle mixed

cooperative-competitive environments. Off-policy learning enhances stability by learning

from past experiences. Examples include MASAC (Multi-Agent Soft Actor-Critic) (90),

off-policy maximum entropy RL (86), and Twin TD3 (Delayed Deep Deterministic Policy

Gradient) (91, 99). Maintaining a model of other agents, as in MADDPG or via techniques

like confederate image technology (93), is beneficial. (96) discusses five categories of han-

dling nonstationarity, with common approaches in power systems being ignoring (assuming

stationarity) and forgetting (updating based on recent observations), and a few works on

responding/learning opponent models.

4.3.2. Scalability. To enhance scalability, parameter sharing is a common approach, where

agents share network parameters for value function or policy estimation (88, 99). This allows

leveraging data from all agents to update a single shared network, improving scalability

and reducing policy oscillations. Combining parameter sharing with Graph Convolutional

Networks (GCNs) can further incorporate topology information (88). Efficient exploration

techniques, such as parameter space noise (92), can prevent premature convergence in large

action spaces. Spatial discount factors (87) encourage agents to consider the impact of their

actions on neighboring agents, limiting the state/action space span. Open-source simulation

platforms, such as (84, 87), facilitate comparison of various MARL algorithms, with some,

such as MADDPG and TD3, demonstrating good scalability (84).

4.3.3. Handling Partial Observability. Local measurements are commonly used to achieve

distributed optimization under partial observability (84, 87, 88, 90). Recurrent networks,

such as Gated Recurrent Units (GRUs) (e.g., (88)) and Long Short-Term Memory (LSTM)

(e.g., (87)), can effectively encode history to extract relevant features. Learning a surrogate

model using Sparse Variational Gaussian Processes (SVGP) to create a simulation envi-

ronment for MARL (92) can reduce real-world communication and data collection. Agents

modeling other agents (93, 98) can also mitigate partial observability.

4.3.4. Communication Efficiency. Communication allows agents to share information and

coordinate actions, but it must be done efficiently. Some approaches assume no explicit

communication, e.g., decentralized training (100). Selective communication is common,

where agents only communicate a subset of relevant information, such as value/policy data

(86) or encoded state information (87). In structured communication, such as networked

MARL (e.g., (86, 91)), each agent only needs to communicate with its neighbors. Agents can

also learn communication protocols end-to-end, such as using differentiable communication

(87). To handle agent and communication failures, (86) proposes constructing replacement

states using historical averages and the agent’s own policy networks to maintain operations.
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The impact of communication topology changes on learning performance is studied in (91).

Incentive mechanisms can be designed to encourage collaboration. A cooperative bi-level

framework, introducing an asymmetric Markov game to align agent objectives and guide

equilibrium behaviors, along with a bi-level actor-critic algorithm for real-time control, is

proposed in (89). Similarly, (99) adopts a bi-level approach to balance operational safety

and market participants’ interests. While existing approaches use penalty functions and

global reward signals to promote cooperation and align objectives, (94) introduces Markov

Signaling Game, a framework for studying strategic incentive-compatible communication

between a sender and a receiver. The signaling gradient and extended obedience constraints

help learn efficient and stable policies under information asymmetry.

4.3.5. Other Considerations. (88) introduces a GCN into the multi-agent actor-critic frame-

work to enable generalization to different grid topologies. For constraint satisfaction, (84)

proposes a voltage barrier function, later adopted and extended by (88) and others.

Robustness ensures graceful performance degradation under disturbances or adversaries.

PowerNet (87) has been evaluated for robustness against different levels of load variations

and agent disconnection or addition during operation, showing that it maintains good per-

formance and quickly adapts to topology changes. Imperfect observations and topology

flexibility have been addressed by encoding topology status as continuous variables, en-

abling adaptation to reconfigurations (90). Robustness against anomalous measurements

has been enhanced by combining spatial and temporal variation pattern extraction using

attention mechanisms and trajectory history features (93).

4.4. Learning-Assisted Distributed Optimization Techniques

Integration of RL in Distributed Optimization Most optimization methods from Sec. 3 can

be integrated with RL to tackle complex and stochastic nonlinear dynamic control problems.

These include primal-dual decomposition and Lagrangian relaxation, where RL optimizes

dual variables for faster convergence (101–104); interior-point policy optimization, inte-

grating RL with IPM for effective constraint handling (105); and stochastic optimization,

incorporating RL for managing uncertainties (103); and adaptive optimization (106), where

RL is used to leverage and adapt the solution function of an optimization problem (60) as

a policy function in a distributed setting.

Learning-Assisted ADMM for OPF Several studies have demonstrated the improved effec-

tiveness of integrating ADMM with learning methods for solving OPF problems (107–109).

An asynchronous ADMM framework with momentum-extrapolation prediction has been in-

troduced to manage asynchronous updates and communication failures (107). RNNs have

been applied to predict ADMM convergence rates, accelerating optimization while main-

taining privacy (108). ADMM’s consensus parameter learning can be learned, optimizing

decentralized power system efficiency (109). Deep Q-learning has been employed to dy-

namically select optimal penalty parameters in ADMM for AC OPF, significantly reducing

computational complexity (110).
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5. Distributed Real-Time Optimal Power Flow and Related Problems

RT-OPF, also known as online OPF, addresses the challenges posed by increasing DER

penetration by leveraging real-time grid data and continuously updating control settings (8).

RT-OPF differs from standard OPF in several key aspects: 1) cost functions, constraints,

and network parameters can be time-varying; 2) algorithms must track the optimal solution

rapidly with implementable solutions (111); and 3) only a subset of variables are directly

controllable, while others are determined implicitly by the power flow equations. Online

optimization problems in power systems span various timescales, from sub-minute to minute

timescale (frequency/voltage regulation), to minute to hour timescale (RT-OPF), to hours

to day timescale (energy storage system scheduling and multi-stage economic dispatch) (8).

While earlier works laid the groundwork for RT-OPF (see (8) for a review), recent

research has focused on distributed RT-OPF, which leverages local measurements for im-

proved robustness against single point of failure and a plug-and-play architecture that eases

the integration of new grid components (e.g., (112–117)). This approach has been demon-

strated in a case study on a 502-node distribution system, where the calculation time was

reduced to 2.34% of the centralized counterpart (117).

For distributed optimization, the transition from static to real-time involves incorporat-

ing real-time measurements of voltages, currents, and power flows at the point of common

coupling, which essentially exploits the laws of physics to solve the power flow equation and

information exchange. These measurements are used in primal-dual updates to calculate

regulating signals (dual variables) for agent coordination and feasibility (112, 114, 118).

They also play a role in correcting model inaccuracy suffered by open-loop feedforward con-

trol when computing the required gradients (sensitivities) of directly controllable variables

to indirectly controllable variables. Typically, precomputed linearized power flow models

are combined with real-time measurement feedback to effectively handle nonlinearities and

avoid the centralized nonlinear power flow Jacobian in real-time (115, 117, 119).

5.1. Optimization Methods for Distributed RT-OPF

5.1.1. Distributed Formulation and Decomposition Methods. A key step from static to

real-time optimization involves introducing time dependency in key parameters in (Eq. 1)

and decomposing the problem for distributed optimization and optimal trajectory modeling.

As in Sec. 3, the main techniques include Lagrangian relaxation (LR) based decom-

position, such as ADMM (112), dual ascent (114, 115, 119), and regularized Lagrangian

of the convex relaxation (113). KKT-based decomposition, such as the distributed interior

point method (116), and primal decomposition by duplicating coupling variables for each

subsystem and imposing consensus constraints (120, 121) are also used.

Real-time measurements enable decoupling the sensitivities of power flow states among

different areas, allowing each agent to predict its future power flow states using only local

and aggregated information from neighbors (117). The changes in power flow states in each

area k at time t+ 1 can be expressed as: ∆xk(t+ 1) = Skk(t)×∆pk(t) +
∑

j∈δ(k) Skj(t)×
∆pj(t), where ∆xk(t + 1) represents the predicted changes in power flow states, Skk(t)

is the sensitivity submatrix, ∆pk(t) represents the changes in DER output powers, and∑
j∈δ(k) Skj(t)×∆pj(t) is the aggregated information from neighboring areas.

Another approach is to implicitly decompose the OPF problem by using learned local

equilibrium functions he
k(qk, vk), which map local reactive power qk and voltage vk to an

approximation of the optimal reactive power setpoint q∗k from the centralized OPF problem
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(122). The enables a decentralized incremental control algorithm for each agent k is: qk(t+

1) = qk(t) + ϵ(he
k(qk(t), vk(t))− qk(t)), where ϵ ∈ [0, 1] is a step size parameter.

Hierarchical decomposition is also considered for coordination (118, 123). A bi-level

optimization is considered in (124), with the upper level optimizing aggregate setpoints

of DER groups and the lower level disaggregating the setpoints across individual DERs.

Different from spatial decomposition, (118) proposes a temporal decomposition based on a

time-varying bi-level optimization problem, which links day-ahead and real-time markets to

manage DER uncertainties using distinct optimization techniques for different time scales.

When linking different timescales, establishing a clear connection is crucial, e.g., using

the solution from one timescale as a reference for the other (118). Uncertainties can have

different characteristics and impacts depending on the timescale, and appropriate techniques

(e.g., distributionally robust optimization for day-ahead planning, online optimization for

real-time operation) should be employed accordingly.

5.1.2. Handling Time-Variation and Constraints. A common technique is based on primal-

dual gradient dynamics, which can be viewed as the path traced by the primal and dual

variables that satisfy the KKT conditions as the system parameters vary over time (8).

To make the dynamic system distributed, the key challenge is to decouple the subproblems

while ensuring coordination. For instance, (116) reformulates the dynamic system using the

first-order optimality conditions for each subproblem, with the boundary variables appear-

ing as parameters. Agents communicate with a coordinator by sending quadratic approxi-

mations of their objective functions with respect to the boundary variables’ increments; the

coordinator solves for the optimal increments and sends them back to each agent.

Time-varying conditions can be also handled by re-solving the MPC problem at each

time step for a receding horizon, which uses predictive models to deal with uncertainty

and ensure feasibility (120, 123). To address multi-period constraints, methods based on

Lyapunov optimization (125–127) and online convex optimization (OCO) (8, 128–130) have

been developed . Prediction models for future power flow states can also be used (117).

5.1.3. Information Exchange and Local Computation. As with most distributed optimiza-

tion, a central coordinator (e.g., distribution management system (114, 119), network op-

erator/aggregator (113, 124)) is often needed. Agents may send information pertaining to

their actions (113) and boundary variables (112) to the coordinator. The coordinator may

broadcast information such as dual variables (e.g., incentive signals (113, 118)) or primal

variables (e.g., setpoint commands (115)), and perform real-time measurements to monitor

constraint violations (118). Networked exchange between peers may include boundary in-

formation, such as power flow states and increments of DER state (121) or output powers

(117), or local objective value estimates to achieve consensus (131).

Each agent’s local computation often prefers simple methods such as projected gradient

(131) or closed-form expressions (114, 116) derived from KKT conditions. This is often

achieved by leveraging appropriate linear approximations of the AC power-flow equations

(112, 114, 121, 132). A fixed number of iterations of the distributed algorithm using the

previous solution as a warm start may be performed (113). In principle, ADMM with low-

iteration complexity (Sec. 3.1.2) can be used (112) with transferable convergence analysis.

5.1.4. Other Practical Considerations. Unbalanced three-phase distribution systems can be

handled with an inter-phase coordination strategy (121). Non-ideal communication, such
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as delayed/outdated communication (119, 121, 133) and packet drops (121), has been eval-

uated. For instance, (133) shows that moderate delays lead to some suboptimality but

not instability. Adaptive step size tuning is shown to accelerate convergence and avoid

oscillations (119). The impact of network size, number of consensus steps, and gradient

bias on convergence has also been assessed (131). Local iterative updates based on gra-

dient estimates and projection are developed to optimize the steady-state performance of

a networked nonlinear system while circumventing local sensitivities and satisfying input

constraints (131). For real-time distributed equilibrium seeking, see also (56) and (95).

5.2. Discussion of ML for Distributed RT-OPF

ML methods (Sec. 4) are inherently suitable for RT-OPF due to the fast response capa-

bility of the learned policies based on system states (e.g., (134)). MARL techniques (Sec.

4.3) rely on localized information and are inherently suitable for distributed counterparts.

For instance, (135) demonstrates the real-time computational feasibility, with an online

execution time of about 40ms for a 123-bus system.

Most papers apply offline-trained RL policies (e.g., RL (103) or safe RL methods

(104, 136–138)) for online control without further adaptation. If the environment is non-

stationary, the offline-trained policy may not perform optimally. Extensive pretraining

with diverse conditions may help handle non-stationary environments (134, 137). Exten-

sive pretraining with diverse conditions may help (134, 137). For instance, (134) considers

uncertainties from renewable energy sources and N − 1 topology changes during training,

making the trained agent more robust during online implementation.

CMDP: An MDP
with additional costs

{ci}i, where a

feasible policy π
must satisfy

Vci (π) ≤ 0 for all i,

with Vci (π) =
Eπ [

∑∞
t=0 γ

tci(st, at)]

being the expected

cumulative
discounted cost

under π.

Safety and stability are primary concerns in RT-OPF. Control-theoretic approaches

can be used for stability-certified RL (76, 139). For safety constraints on state/action

spaces, common approaches include penalty-based methods or using Lagrangian to derive

primal-dual algorithms (134, 136, 140); Constrained Markov decision process (CMDP) has

gained popularity in safe RL (104, 138). A knowledge-driven action masking technique is

introduced to explicitly identify critical action dimensions based on the physical model,

guiding the policy exploration in the safety direction (138). A safe RL method based on

Proximal-Dual Optimization-based Proximal Policy Optimization (PDO-PPO) algorithm

is proposed (104), eliminating the need for manually selecting penalty weights between

rewards and safety violations. A holomorphic embedding (HE) based safety layer in the RL

policy can be added to ensure the operability of the control actions (140). (137) introduces

a supervisor and projector framework, where the supervisor examines the safety of the

actions generated by the RL agent, and the projector modifies unsafe actions with minimal

modification to ensure operational safety during online control. A hybrid method to derive

the actor gradients by solving the KKT conditions of the Lagrangian using power system

models is proposed to improve sample efficiency (136).

For efficient utilization of computational resources and faster solution times, existing

works e.g., (133), use techniques aligned with data parallelism in distributed ML.

6. Key Challenges and Prospective Directions

Scalability and Computational Efficiency The scalability challenge in power system opti-

mization, exacerbated by DER integration, can be addressed by distributed approaches in

principle. However, it is more nuanced due to the trade-off among communication over-
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head, potential suboptimality, and susceptibility to faulty processes. Recent comparisons

among ADMM, ALADIN, ATC, and APP show that wall-time computation does not cor-

respond well with the number of iterations due to local computation and communication

overhead (141). Practical benefits require careful consideration of communication infras-

tructure, data sharing protocols, and the balance between local and central computational

resources, desired accuracy, and convergence time. Joint consideration of communication

and convergence is essential; data exchange servers can help maintain data accuracy and

timeliness, and quantized messages can reduce communication overhead. Hardware-aware

computation and algorithm design for low-resource settings are important.

Handling Nonstationarity, Uncertainty, and Stochasticity Renewable energy integration,

dynamic loads, and evolving topologies have introduced significant nonstationarity, uncer-

tainty, and stochasticity in power systems. These challenges are compounded by the dynam-

ics of distributed optimization process itself, such as time-varying communication networks,

asynchronous updates, communication failures, varying agent activation mechanisms, and

concurrent agent learning (Sec. 4.3.1). Online and real-time distributed optimization meth-

ods leveraging real-time data and feedback are promising (Sec. 5).

Developing optimization algorithms that can dynamically adapt their parameters, such

as communication topology, synchronization frequency, or penalty/proximal factors, based

on detected changes in system states or agent behaviors is a promising direction. Incor-

porating power system domain knowledge into machine learning models can improve their

data efficiency and generalization (Sec. 4.1), as demonstrated by the winning solution to

the CityLearn Challenge (106). Data-centric AI emphasizes data quality for robust ML

models, which could be useful for managing the integrity of distributed data.

Drawing inspiration from “antifragility”, optimization/ML methods can be designed

to not only withstand uncertainty and variability but actively benefit from them. Po-

tential connections to various areas such as meta-learning, continual learning, and multi-

objective/quality-diversity optimization are explored for computational antifragility (142).

Privacy Distributed optimization requiring sensitive information sharing from/among

agents may raise privacy concerns, as many existing methods, such as ALADIN, involve

extensive data sharing with a central coordinator, making the system vulnerable to honest-

but-curious agents and external eavesdroppers (143). Differential privacy is gaining traction

due to its low computational and communication complexities. Co-designing privacy mecha-

nisms with coordination algorithms, such as carefully choosing stepsizes, weakening factors,

and noise distributions, has led to algorithms with strong privacy guarantees while preserv-

ing convergence (143). Quantized messages as a form of noisy exchange can also maintain

privacy and communication efficiency.

Robustness vs
Resilience vs
Antifragility :
Robustness

maintains
performance under

perturbations;
resilience recovers

from disruptions.

Antifragility, a
paradigm for

preparing for rare

events (black
swans), goes beyond

by leveraging

volatility for growth
and adaptation.

Safety, Robustness, and Cybersecurity Distributed algorithms for power systems should be

secure and resilient against failures and adversarial conditions. Anomaly detection methods

can be applicable. Boundary defense mechanisms leveraging network sparsity to recover re-

gions outside attacked areas (144) is a promising yet underexplored direction. Ensuring

compatibility, compliance with data protection regulations, and maintaining stability and

reliability are challenges in integrating distributed optimization/learning with existing in-

frastructure and regulations. ML models should be safe and data-efficient, especially under

distributional shift (Sec. 4). Adapting the AI model inspector framework (145), such as
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stress-testing with adversarial examples and checking out-of-distribution generalization, can

be relevant. Just as power system equipment requires regular maintenance, ML models may

need periodic re-assessment and updates to maintain robustness as conditions change; on-

going monitoring and upkeep of ML components in distributed OPF systems over their full

lifecycle is crucial.

LITERATURE CITED

1. D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei,

“A survey of distributed optimization and control algorithms for electric power systems,” IEEE

Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.

2. T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H.

Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp.

278–305, 2019.

3. N. Patari, V. Venkataramanan, A. Srivastava, D. K. Molzahn, N. Li, and A. Annaswamy,

“Distributed optimization in distribution systems: Use cases, limitations, and research needs,”

IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3469–3481, 2021.
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