
1

Multi-Pickup and Multi-Delivery of Restaurant Orders: A

Capacity-Constrained K-means Clustering Approach
Elson Cibaku, Sanchoy Das, SangWoo Park

Abstract—The Multi-Pickup and Multi-Delivery Problem
with Time Window (MPMDPTW) is an essential optimization
problem in transportation and logistics, with significant real-
world applications in today’s fast-paced environment. This
research addresses the challenging task of optimizing multiple
restaurant order pickups and deliveries through a novel
application of a capacity-constrained K-means clustering
approach. By employing advanced clustering techniques, this
study aims to address the dynamic and complex logistics
within the food service industry. The primary goal is to
enhance service delivery efficiency, mitigate time lags, and
reduce operational expenses. Our approach organizes orders
into efficient clusters, effectively managing the distribution of
tasks among available delivery resources. This method not
only optimizes route planning but also adapts to varying lo-
gistical demands, ensuring more responsive and cost-effective
delivery operations. This study redefines the utilization of
clustering algorithms in managing food service logistics,
marking a significant advancement in intelligent and auto-
mated delivery systems. We demonstrate the practical benefits
and improvements in transportation and logistics systems
through empirical analysis and real-world data application.

Index Terms—Multi-pickup and multi-delivery problem
with time window, vehicle routing problem, logistics optimiza-
tion, time window constraints, capacity-constrained cluster-
ing, k-means, minimum cost flow, pickup and delivery routing,
parallel optimization.

I. INTRODUCTION

As the world becomes increasingly interconnected, the
efficient transport of products and services has become
a cornerstone of modern society, driving the need to
address complex logistics problems such as the Multi-
Pickup and Multi-Delivery Problem with Time Window
(MPMDPTW). The MPMDPTW is an extension of the
well-known Vehicle Routing Problem (VRP), a classic
combinatorial optimization problem that aims to find the
optimal routes for a fleet of vehicles to serve a set of
customers with known demands while minimizing the
total distance traveled [1]–[6]. The MPMDPTW introduces
additional complexities by incorporating time window con-
straints for pickups and deliveries, as well as vehicle
capacity limitations.

Efficiently solving the MPMDPTW can result in sig-
nificant cost savings, improved customer satisfaction, and
reduced environmental impact. Its applications span a
wide range of industries, including e-commerce [7]–[9],
healthcare [10], [11], urban mobility and transportation
planning [12]–[14]. For instance, in e-commerce, the MP-
MDPTW arises in managing last-mile delivery, and in

Elson Cibaku, Sanchoy Das, and SangWoo Park are in the Department
of Mechanical and Industrial Engineering at New Jersey Institute of
Technology, Newark, NJ, USA. Emails: ec426@njit.edu,
sanchoy.das@njit.edu, sangwoo.park@njit.edu

Fig. 1: Illustration of a pickup and delivery route showcas-
ing drivers’ routes, starting point (D), pickup points (P), and
customers (C). Arrows indicate the flow of goods from pickup
locations to customers, with different colors representing distinct
routes and connections within the route.

healthcare, the problem arises in managing medical supply
channels, where the timely distribution of medical equip-
ment, drugs, and other supplies is essential for patient care.

The MPMDPTW is particularly salient in the rapidly
expanding sector of on-demand food delivery, exemplified
by platforms such as Uber Eats and DoorDash. These
services must continuously coordinate a fleet of drivers to
collect meals from multiple restaurants and deliver them to
multiple customers within strictly defined time windows.
Figure 1 illustrates the optimal solution of an MPMDPTW
instance. Effective MPMDPTW solutions can reduce travel
distances, driver workload, and operational costs while
ensuring timely deliveries, thereby enhancing customer
satisfaction and loyalty.

However, MPMDPTW inherits the NP-hardness of the
VRP, making it difficult to find an optimal solution within a
reasonable time, especially for large-scale problems [15]–
[17]. Note that the MPMDPTW also introduces added
complexity arising from the time window constraints, the
many-to-many pickup-to-delivery mapping, and the vehicle
capacity constraints. In fact, the MPMDPTW’s trade-offs
are complex and multifaceted. For instance, a trade-off
exists between minimizing total distance or travel time and
maximizing vehicle utilization. In addition, there is a trade-
off between minimizing the required number of vehicles
and ensuring that each delivery is made within the allotted
time frame. It can be challenging to strike an equilibrium
between these trade-offs, as achieving one objective may
necessitate sacrificing another.

In this paper, we propose an accurate and computa-
tionally efficient approach for solving the MPMDPTW
problem, grounded in a novel capacity-constrained clus-
tering technique. Our contributions can be summarized as
follows:

2

• To the best of our knowledge, we present, for the first
time, a comprehensive mathematical model for the MP-
MDPTW that accommodates multiple depots, enforces
pickup–delivery precedence and vehicle capacities, and
integrates earliness/lateness penalties, thereby providing
a more realistic and operationally relevant representation
of the problem.

• We develop a new capacity-constrained clustering al-
gorithm that is efficient and essentially boils down to
solving a linear programming problem formulated as
an equivalent minimum cost flow problem, ensuring
scalability and computational tractability.

• By combining clustering-based decomposition with par-
allelization, we utilize existing commercial solvers to
enhance both the speed and accuracy of the overall
solution process.

• We generate new datasets exhibiting varied spatial and
temporal characteristics and perform extensive simula-
tions, demonstrating the efficiency and adaptability of
our approach under diverse conditions.

The remainder of this paper is organized as follows.
Section II presents a literature review. Section III details the
mathematical model formulation of MPMDPTW, followed
by Section IV, which elaborates on the implementation
of the proposed solution algorithm. Section V provides
numerical results and analysis of the solution procedure
in different scenarios, including different input parameter
values. Finally, Section VI offers concluding remarks.

II. LITERATURE REVIEW

Pickup and Delivery Problems (PDP), Pickup and Deliv-
ery Problems with Time Windows (PDPTW), and Multi-
Pickup and Delivery Traveling Salesman Problems with
Time Windows (MPDPTW) represent variations of the Ve-
hicle Routing Problem (VRP). These complex challenges
have garnered considerable interest in operations research
and transportation science. This literature review endeavors
to succinctly expound upon the progression of solution
methodologies for PDP and its variants.

Early research on the PDP and its time-window vari-
ant (PDPTW) focused on exact methods like branch-and-
bound, branch-and-cut, and column-generation algorithms.
The authors in [1] introduced the PDPTW with a branch-
and-cut algorithm. Building on this, authors in [3] enhanced
computational efficiency with a branch-and-price approach.
[18] further improved branch-and-cut methods for PDPTW,
incorporating valid inequalities. The authors in [19] ap-
plied column-generation techniques for the MPDPTW. The
authors in [20] proposed an adaptive large neighborhood
search (ALNS) for PDP, incorporating branch-and-price
algorithms. Stochastic methods emerged to address un-
certainties like varying travel times and demands, with
contributions by [21] and [22]. Despite the accuracy of
exact approaches, their scalability limitations led to the
exploration of alternative methodologies.

To overcome the limitations of exact methods, re-
searchers developed heuristics and metaheuristics for solv-
ing PDP and its variants. [23] proposed a tabu search
heuristic for PDPTW, employing strategic oscillation and

path relinking strategies to solve large-scale problems.
Genetic algorithms were introduced by [24] for PDPTW,
utilizing genetic operators like crossover, mutation, and
selection. This approach demonstrated the potential of ge-
netic algorithms in complex routing with time constraints.
The authors in [25] showcased the efficiency of simulated
annealing for large-scale instances of the PDPTW, integrat-
ing local search and acceptance criteria.

Meanwhile, multi-objective optimization addresses un-
certainties and conflicting objectives in PDP and their
variants. Multi-objective optimization aims to balance ob-
jectives such as minimizing operational costs, reducing
travel times, and improving service quality. [26] proposed
a Pareto-based multi-objective local search for the bi-
objective PDPTW, minimizing travel distance and bal-
ancing vehicle workloads. In [27], the authors proposed
a multi-objective genetic algorithm for PDP with Time
Windows, considering cost and time objectives through
a Pareto-based ranking mechanism. These approaches
demonstrate the efficacy of multi-objective optimization in
complex routing scenarios.

The rising interest in artificial intelligence and machine
learning has led researchers to explore their applicability
in this field. Neural networks help learn representations
of problem instances, generating initial solutions refined
by local search or metaheuristics. Reinforcement learning,
including Q-learning and actor-critic methods, has been
used for routing policies. [28] introduced the Pointer Net-
work, leveraging attention mechanisms for combinatorial
optimization, including PDP. Notably, the authors in [29]
proposed a sequence-to-sequence model using recurrent
neural networks (RNNs) to predict node sequences for
feasible routes. These approaches demonstrate the potential
of deep learning in addressing complex routing problems.
Reinforcement learning (RL) approaches [30], [31] have
also been applied to PDPTW and MPMDPTW, offering
promising avenues for solving these problems by learning
decision-making policies. In [32], the authors proposed an
RL-based approach for the Capacitated Vehicle Routing
Problem (CVRP) using a deep Q-network to learn routing
policies. The authors in [33] introduced a deep rein-
forcement learning (DRL) approach for PDP, combining
a graph neural network (GNN) with an RL algorithm.
This combination allowed the model to learn both the
representation of problem instances and optimal decision
policies, demonstrating the potential of integrating deep
learning and RL for complex routing challenges.

Due to their ability to naturally decompose large prob-
lems into smaller instances, which can be solved much
faster in parallel, clustering techniques like K-means have
been widely applied to PDPs and VRPs. The authors in
[34], [35] demonstrated the simplicity and efficiency of
K-means in partitioning data based on proximity. In [36],
the authors used K-means for customer assignment in
last-mile delivery, reducing travel distance. The authors
in [37] employed K-means to partition delivery areas,
balancing workload and optimizing costs. In cold chain
logistics, K-means helped reduce costs and wastage [38].
Hybrid methods combining K-means and genetic algo-

3

rithms addressed green delivery and multi-depot PDP [39],
[40]. Clustering also optimized distribution center locations
[41], vehicle routing with time windows [42], and two-
echelon routing with multi-commodity goods [43]. Exist-
ing clustering approaches, while successful in reducing
computational complexity by grouping spatially proximate
nodes, are generally designed for conventional VRPs and
often overlook the intricate operational constraints inherent
in MPMDPTW settings. For instance, standard K-means
or related methods do not naturally account for vehicle
capacity limitations, order-specific time windows, or the
required precedence relationships between pickups and
deliveries. As a result, directly applying these traditional
clustering strategies to MPMDPTW can lead to infeasible
solutions or require extensive post-processing to enforce
operational constraints. In contrast, our approach integrates
capacity directly into the clustering phase via a minimum
cost flow formulation, ensuring that each cluster remains
feasible under vehicle load limitations. This capacity-aware
grouping significantly reduces the post-processing required
to handle time windows and pickup-delivery precedence in
subsequent routing steps, yielding a more efficient method
for solving MPMDPTW instances.

III. PROBLEM FORMULATION

In this section, we present the mathematical problem
formulations for the MPMDPTW. We define the studied
MPMDPTW over a graph G = (V, E), where nodes in V
represent locations, and edges in E represent trips between
locations. The set V is the union of three mutually exclusive
sets: P , which is the set of pickup locations, D the set of
delivery locations, and S the set of depot locations.

A. Notation

We introduce the notations used in the mathematical model
of the MPMDPTW:

Sets and Parameters
• V = {1, . . . , n}: Set of nodes representing locations.
• E = {(i, j)|i, j ∈ V, i ̸= j}: Set of edges between nodes.
• K = {1, . . . ,m}: Set of dispatchable vehicles.
• S ⊆ V: Set of depot locations, P ⊆ V: Set of pickup

locations, D ⊆ V: Set of delivery locations.
• R = {(po, do)|o = 1, . . . , nr}: Set of customer requests,

where po and do are the pickup and delivery nodes of
order o, respectively.

• Qk: Capacity of vehicle k.
• Tijk: Travel time between nodes i and j for vehicle k.
• Si: Service time at node i.
• qi: Demand of node i.
• TWi = [ei, li]: Time window of node i, where ei and
li are the earliest and latest service times at node i,
respectively.

• S(k) : (K → S) a function that maps each vehicle k ∈ K
to its designated starting depot in S.

• N (i) is the set of nodes that are adjacent to node i in
the graph. In other words, this is the set of nodes that
can be traveled from node i.

Decision Variables

• xijk ∈ {0, 1}: Binary variable that takes the value 1 if
vehicle k travels on arc (i, j) ∈ E , and 0 otherwise.

• bik ∈ R+: Continuous variable representing the time
when vehicle k starts servicing node i.

• qik ∈ Z+: Integer variable representing the load of
vehicle k when leaving node i.

• tik ∈ R+: Continuous variable representing the tardiness
at node i for vehicle k.

• sik ∈ {0, 1}: Binary variable that takes the value 1 if
node i is serviced by vehicle k within the time window,
and 0 otherwise.

• rik ∈ R+: Continuous variable representing the earliness
at node i for vehicle k.

B. Objective Function

The objective is to minimize the total operational cost for
all vehicles, which includes the sum of the travel times
expended by each vehicle on each arc, along with penalties
for earliness and tardiness at pickup and delivery locations.
The mathematical formulation of the objective function is
as follows:

min
∑
k∈K

∑
(i,j)∈E

Tijk · xijk + ρ
∑

i∈P∪D

∑
k∈K

(tik + rik) (1)

C. Constraints

Every pickup and delivery must be served exactly once.
This ensures that each customer’s request is satisfied by a
single vehicle.∑

k∈K

∑
j∈V

xijk = 1, ∀i ∈ P ∪ D (2)

If dispatched, vehicle k starts at the designated depot, S(k),
and must directly go to a pickup location (i.e., cannot go
directly to a delivery location). A vehicle may not leave at
a non-designated depot.∑

j∈P
xS(k)jk ≤ 1, ∀k ∈ K (3)∑

j∈D
xS(k)jk = 0, ∀k ∈ K (4)∑

i∈S/S(k)

∑
j∈V

xijk = 0, ∀k ∈ K (5)

Similarly, if dispatched, a vehicle ends its route at the
designated depot, S(k) after serving its last delivery (i.e.,
cannot come directly from a pickup location). A vehicle
may enter a non-designated depot.∑

i∈D
xiS(k)k ≤ 1, ∀k ∈ K (6)∑

i∈P
xiS(k)k = 0, ∀k ∈ K (7)∑

i∈V

∑
j∈S/S(k)

xijk = 0, ∀k ∈ K (8)

Next, the flow conservation constraints ensure that if a
vehicle k enters a node i, it should also leave it:∑

j∈V
xijk =

∑
j∈V

xjik, ∀i ∈ V,∀k ∈ K (9)

4

The following condition uses the big-M method to ensure
that if a vehicle k goes from node i to node j (i.e., xijk =
1), the starting service time at node j for vehicle k must be
greater than or equal to the time vehicle k finishes service
at node i and travels to node j. This effectively ensures the
proper sequencing of nodes and eliminates the possibility
of subtours.

bjk + (1− xijk)M ≥ bik + Si + Tijk, ∀(i, j, k) ∈ E × K
(10)

The parameter M is a large constant that renders the
inequality irrelevant if xijk = 0. To initialize the reference
time, we also need a constraint ensuring that each vehicle
k starts its service at its designated depot S(k) at time 0:

bS(k)k = 0, ∀k ∈ K. (11)

Another important aspect of the problem is the load con-
straint, which guarantees that a vehicle’s load respects the
pickup and delivery actions and never exceeds its capacity
throughout its tour.

qjk + (1− xijk)M ≥ qik + qj , ∀(i, j, k) ∈ E × K (12)
qik ≤ Qk, ∀(i, k) ∈ V × K (13)

qS(k)k = 0, ∀k ∈ K (14)
qik ≥ 0, ∀(i, k) ∈ V × K (15)

The first constraint is the load balancing constraint, which
ensures that if vehicle k goes from node i to node j (i.e.,
xijk = 1), the load of vehicle k when leaving node j is
at least the load of vehicle k when leaving node i plus
the demand at node j. Note that for a pickup location,
the demand takes on a positive value, while for a delivery
location, the demand takes on a negative value. If the
vehicle does not go from node i to node j (i.e., xijk = 0),
then the constraint is not binding due to the big-M method.
In our implementation, we set the value of M to be equal to
maximum vehicle capacity. The second equation enforces
the vehicle capacity limit, the third enforces non-negativity,
and the fourth ensures that the load of any vehicle k starting
at its depot S(k) is zero, as the vehicle has not picked up
any orders yet.

The following time window constraints ensure that
each delivery operation respects the given time windows,
avoiding early arrivals or late services that could cause
discomfort for the customers:

ei ≤ bik, ∀i ∈ D,∀k ∈ K
bik + Si ≤ li, ∀i ∈ D,∀k ∈ K

(16)

While the above constraints require strict compliance with
the given time windows, this is oftentimes not feasible.
Therefore, we relax the constraints and penalize the vio-
lations by introducing the tardiness and earliness terms.
Tardiness is represented by the difference between the
actual service completion time and the upper end of the
time window:

tik ≥ bik + Si − li, ∀i ∈ P ∪ D,∀k ∈ K (17)

If the service is completed within the time window, the
tardiness is zero. Similarly, earliness is represented by the

difference between the service start time and the lower end
of the time window:

rik ≥ ei − bik, ∀i ∈ P ∪ D,∀k ∈ K (18)

If the service is started within the time window, the
earliness is zero.

To guarantee that both the pickup and delivery of a single
request are completed by the same vehicle, we include the
following constraints in the model:∑

j∈V
xpojk ≤

∑
j∈V

xdojk, ∀(po, do) ∈ R,∀k ∈ K (19)

The following constraints ensure that for each request
i, the delivery task must happen after the corresponding
pickup task has happened for each vehicle k.

bpok ≤ bdok, ∀((po, do), k) ∈ R×K (20)

This constraint complements constraint (10), ensuring that
the pickup precedes the delivery in its route.

IV. SOLUTION METHODOLOGY

The exact problem formulation described in Section III
is computationally challenging to solve, especially for large
systems. In this section, we provide a detailed overview of
our proposed algorithm designed to solve the MPMDPTW.
The algorithm is structured into two primary steps: (i)
clustering of orders and assigning clusters to vehicles and
(ii) finding the optimal route for each vehicle (which may
cover multiple clusters). As mentioned previously, existing
clustering techniques cannot be used in our problem con-
text because of the vehicle capacity constraints. The pro-
posed clustering-based decomposition also enables a par-
allel and distributed computing paradigm. By treating each
cluster as an independent subproblem, multiple processors
or computational nodes can address them concurrently.
This parallelization substantially reduces total computation
times and enhances scalability, making the approach well-
suited for large-scale, real-time applications.

Capacity-Constrained K-means Clustering and Assign-
ment. The work [44] proposes an adaption of k-means
clustering in order to compute clusters that respect the ca-
pacity of vehicles. However, the method is computationally
inefficient in the sense that it resets the centroids randomly
every time the clusters fail to satisfy the capacity constraint.
Furthermore, the method assumes that all vehicles are
dispatched and start at the same depot, which is not the
case for many real-world problems.

Motivated by the work of [45], we propose a novel al-
ternating clustering algorithm that is made computationally
efficient by utilizing the equivalent minimum cost network
flow formulation. Given an initial randomly generated
set of centroids, where the number of centroids matches
the number of available vehicles, m, (1) assign clusters
to vehicles (many-to-one matching), (2) create clusters
by assigning order requests to the closest centroid while
respecting vehicle capacity constraints, (3) update centroid
for each cluster and return to step 1. A key challenge of this
approach is that the cluster-to-vehicle assignment requires
order-to-cluster information and vice versa. Alternating

5

between the two processes until convergence helps resolve
this issue.

1. Cluster-to-Vehicle Assignment
Let V k denote the 2-d coordinates of vehicle k. Then,
we define the distance between vehicle k and centroid
c to be Ckc = ∥V k − Cc∥. Based on these distances,
the following optimization problem can be formulated to
find the cluster-to-vehicle assignment that minimizes the
total distance between vehicles and clusters. Note that the
formulation allows (i) a vehicle to not be dispatched and
(ii) multiple clusters to be assigned to a single vehicle.
Also, note that

∑
r∈R(c) qr is a parameter computed based

on the order-to-cluster assignment of the previous iteration
and represents the total load of orders assigned to cluster
c.

In this formulation, zck is a binary decision variable,
where zck = 1 if cluster c is assigned to vehicle k,
and zck = 0 otherwise. The variable zck ensures that
each cluster is assigned to exactly one vehicle while also
allowing the model to determine the optimal assignment
configuration that respects vehicle capacity constraints.

min
z∈{0,1}m×m

∑
(i,j)∈E

Cckzck

s.t.
∑
k∈K

zck = 1, ∀c ∈ C

∑
c∈C

 ∑
r∈R(c)

qr

 zck ≤ Qk, ∀k ∈ K

(P1)
Equivalent Minimum Cost Flow (MCF) Formulation: In
general, an MCF problem requires an underlying graph
structure. Let each cluster centroid c ∈ C correspond to
a supply node with supply = 1 (ωc = 1). Also, let each
vehicle k ∈ K correspond to a demand node with ωk =
−Qk. Finally, let node a correspond to an artificial sink
node. Then, the equivalent MCF formulation is given by
the following linear program (LP):

min
y∈Rm×m

ŷ∈Rm×1

∑
k∈K

∑
c∈C

Cckyck + σ
∑
k∈K

max(ŷka, 0)

s.t.
∑
k∈K

yck = 1 ∀c ∈ C

ŷka =
∑
c∈C

 ∑
r∈R(c)

qr

 yck −Qk ∀k ∈ K

(P1’)
A figure that helps understand this equivalent formula-

tion is provided in the Appendix.

2. Order-to-Cluster Assignment This step involves as-
signing orders to a nearby centroid while considering ve-
hicle capacity constraints. Due to the capacity constraints,
simply identifying the closest cluster centroid will not lead
to optimal solutions. Similar to before, we can define Crc to
be the distance between order r and the centroid of cluster
c. Then, the capacity-constrained k-means clustering can

Algorithm 1: Constrained K-means Algorithm
Input: Delivery requests, R, vehicle locations,

{V k}, initial centroids, {Cc}
Output: Clustering of orders and assignment of

vehicles.
Parameter Settings: move = true

1 Assign each order r ∈ R to the nearest centroid
without considering vehicle capacity constraints.
→ R(c) = {r | order r assigned to centroid c}

while move = true do
2 Assign each cluster c ∈ C to a nearby vehicle

by solving P1’ →
C(k) = {c | centroid c assigned to vehicle k}.

3 Assign each order r ∈ R to a nearby centroid
while considering vehicle capacity constraints
by solving P2’ → update R(c).

4 Update centroids using the clustered order
locations:

for c← 1 to |C| do
Nc ←

∑
r∈R(c)

zrc

C̃c =

1

Nc

(∑
r∈R(c)

zrcX
i

)
if Nc > 0

Cc otherwise

Cc ← C̃c ∀c ∈ C
5 Check for convergence:

if no point has moved to another cluster then
move ← false

be formulated as the following optimization problem:

min
z∈{0,1}m×m

∑
r∈R

∑
c∈C

Crczrc

s.t.
∑
c

zrc = 1 ∀r ∈ R∑
c∈C(k)

∑
r∈R

qrzrc ≤ Qk ∀k ∈ K

(P2)

Equivalent Minimum Cost Flow Formulation: The under-
lying graph structure for this MCF is a bit more complex
than the previous one. Let each order r ∈ R correspond to
a supply node with supply = 1 (ωr = 1). Let each cluster
c ∈ C correspond to an intermediate node with no demand
or supply. Let each vehicle correspond to a demand node,
with demand equal to its capacity (ωk = −Qk). There
exists an arc between a cluster node and a vehicle node
only if the cluster is previously assigned to that vehicle. All
other edges between layers are connected. Finally, let node
a represent an artificial sink node. Then, the equivalent
MCF formulation is given by the following linear program
(LP). Note that the distance between clusters and vehicles
is not minimized because that relationship is fixed at this
stage.

6

min
y∈Rm×m

ŷ∈Rm×1

∑
r∈R

∑
c∈C

Crcyrc + σ
∑
k∈K

max(ŷka, 0)

s.t.
∑
c∈C

yrc = 1 ∀r ∈ R

ŷka =
∑

c∈C(k)

∑
r∈R

qryrc −Qk ∀k ∈ K

(P2’)
A figure that helps understand this equivalent formula-

tion is provided in the Appendix.
Parallel Computing for Optimal Routes Once orders are
grouped into capacity-constrained clusters and assigned to
vehicles, each cluster can be solved independently as a
smaller MPMDPTW subproblem using the exact mathe-
matical formulation presented in Section III. For each
cluster, we extract the relevant subsets of tasks, vehicles,
and constraints and construct an individual MPMDPTW
instance. We then employ Gurobi’s Mixed-Integer Pro-
gramming (MIP) solver to optimize each subproblem.
This clustering-based decomposition naturally facilitates
concurrent optimization. This lends itself well to distributed
computing paradigms: each cluster’s route optimization can
be offloaded to a separate processor or computational node.
Modern parallelization frameworks, such as Python’s Pro-
cessPoolExecutor, execute these cluster-level optimizations
concurrently, thereby significantly reducing overall compu-
tation time. As the number of clusters grows, practitioners
can scale the computing resources accordingly, making the
approach flexible, efficient, and better suited for large-scale,
real-time applications.

V. NUMERICAL SIMULATIONS

To evaluate the efficacy of our proposed algorithm
for MPMDPTW, we devised an experimental setup that
compares our clustering-based approach - where we use
Gurobi optimizer to solve the resulting subproblems after
orders are grouped into capacity-feasible clusters - against
a direct application of Gurobi to the entire problem instance
without clustering. This two-step strategy is contrasted with
running Gurobi alone on the entire instance, allowing us
to clearly demonstrate the advantages in computational
efficiency and solution quality gained by incorporating the
clustering step. Our datasets are based on the 100-task
instances from Li & Lim’s benchmark problems [46]. To
generate a variety of test cases with different operational
characteristics, we introduced controlled modifications to
these base instances. For example, we advise our data
generation tool to pick orders with time windows to vary
their widths and overlaps, thereby influencing temporal
scatteredness. We also altered vehicle capacities and the
spatial placement of pickup and delivery points to create
scenarios with differing levels of spatial density and com-
plexity. Through these systematic variations, we obtained
a spectrum of problem instances that differ not only in size
but also in key structural properties.

We employ three metrics to capture the structural prop-
erties of the MPMDPTW problem instances: (i) spatial
scatteredness (i.e., the density of requests), (ii) temporal

scatteredness, and (iii) the degree of mixing of pickups
and deliveries. Spatial scatteredness metric captures the
geographical distribution of pickup and delivery tasks by
computing the average pairwise distance among all i, j ∈
V:

Spatial Scatteredness =
2

|V| (|V|−1)
∑

i,j∈V,
i<j

∥xi − xj∥

(21)
where ∥xi − xj∥ is the Euclidean distance between nodes
i and j. As illustrated in Figure 3, larger values indicate
more spatially dispersed tasks.

Temporal Scatteredness metric measures the variance
between the earliest and latest service times across orders,
computed as follows:

Temporal Scatteredness = max
i∈V

(
li
)
− min

i∈V

(
ei
)

(22)

A larger gap indicates greater variation in service windows
across the orders, as shown in Figure 2. The degree
of mixing metric gauges how interspersed pickups and
deliveries are based on their spatial proximity. For the set
of requests R, where each order o is composed of a pickup
node po ∈ P and a delivery node do ∈ D, we define:

Mixing Degree =
1

|R|
∑

(po, do)∈R

1
(
∥xpo − xdo∥ ≤ δ

)
,

(23)
where xpo

and xdo
are the coordinates of the pickup and

delivery locations for order o, respectively, and ∥·∥ denotes
the Euclidean norm. The threshold δ parameter specifies a
maximum allowable spatial distance between po and do.
Higher MixingDegree values indicate a greater proportion
of requests whose pickup and delivery locations lie suffi-
ciently close to each other in space, thereby reflecting a
more interwoven physical layout of the tasks.

These metrics enable the evaluation of a solution
methodology’s performance under varying spatial and tem-
poral distributions of orders.

A. Numerical Results

Our numerical experiments compare the proposed
Capacity-Constrained Clustering + Gurobi (C3-Gurobi)
algorithm against the solutions obtained through Gurobi
optimizer without clustering (Baseline Gurobi), by running
extensive simulations on the aforementioned dataset. We
compute the total travel time, the travel time gap, the MIP
gap, and the runtime of algorithms for each test case. The
travel time gap computes how much worse the C3-Gurobi
solution compares against the Baseline Gurobi solution.
The results illustrate the trade-offs between computational
efficiency and solution quality specific to each scenario.
Each dataset consists of 30 tasks (15 pickups and 15
deliveries) serviced by two drivers starting from different
locations. Each driver had a capacity of 100 units, and
the orders were distributed across multiple locations with
time window constraints such as earliest start time, latest
end time, and service durations, derived from Li & Lim’s
benchmark problems [46]. The computational results reveal

7

(a) Low temporal scatteredness (orders have similar time windows) (b) Moderate temporal scatteredness

(c) Slightly more spread in time windows (d) Widely varying time windows (high temporal scatteredness)

Fig. 2: These panels depict varying degrees of temporal scatteredness within scheduling scenarios, based on the 100-task instances
from Li & Lim’s benchmark problems [46]. From tasks with closely aligned time windows to those with widely varying windows,
each scenario illustrates the complexity and dynamic nature of scheduling under different temporal constraints.

(a) Low spatial scatteredness (0.1) (b) Moderate spatial density (0.3) (c) Medium spatial density (0.5) (d) High spatial density (0.8)

Fig. 3: These heatmaps display the density of pickup points across different scenarios, illustrating the range from low to high
density. Each image is generated from Li & Lim’s PDPTW benchmark data, reflecting how spatial planning varies with pickup point
concentration.

the relationship between the three structural properties of
data and the performance of both the Baseline Gurobi and
the C3-Gurobi algorithms. With Gurobi constrained by a
60-minute time limit across all datasets, its ability to find
optimal solutions was sometimes hindered, as indicated by
higher MIP gap values in certain cases.

Spatial Density (see Figure 4): For experiments focused
on spatial density, in the low spatial density scenario,
Baseline Gurobi achieves a lower travel time cost of 499.7
minutes compared to C3-Gurobi’s 511.2 minutes, resulting
in a travel time gap of 2.24%. However, C3-Gurobi com-
puted its solution with a minimal MIP gap of 0.94% in just
39.7 seconds, significantly faster than Baseline Gurobi’s
full runtime of 3600 seconds and MIP Gap of 3.66%.

As the spatial density level increased to moderate (0.3),
Baseline Gurobi maintained a lower travel time of 485.2
minutes versus C3-Gurobi’s 512.1 minutes, leading to a
travel time gap of 5.26%. Despite Baseline Gurobi utilizing
the entire time limit, C3-Gurobi maintained a minimal
MIP gap of 0.98% with a runtime of 33.5 seconds. In the
medium spatial density case, Baseline Gurobi had a better
travel time cost of 472.1 minutes compared to C3-Gurobi’s
490.6 minutes, resulting in a travel time gap of 3.78%. C3-
Gurobi, on the other hand, provided its solution in 20.3
seconds, with a negligible MIP gap of 0.93%. Under high
spatial density, Baseline Gurobi achieved a lower travel
time of 461.2 minutes compared to C3-Gurobi’s 488.5
minutes, leading to a substantial travel time gap of 5.59%,

8

Fig. 4: Comparison of travel time and performance between
Baseline Gurobi and C3-Gurobi across spatial density levels.

and C3-Gurobi delivered its solution in 36.0 seconds with
a minimal MIP gap of 0.86%.

Mixing Pickup and Delivery Points: As shown in Fig-
ure 5, in the low temporal mixing scenario, Baseline
Gurobi achieves a lower travel time cost of 391.0 minutes
compared to C3-Gurobi’s 400.5 minutes, resulting in a
travel time gap of 2.36%. However, C3-Gurobi computed
its solution in just 11.6 seconds, significantly faster than
Baseline Gurobi’s full runtime. As the mixing level in-
creased to moderate, C3-Gurobi achieved a lower travel
time of 402.7 minutes compared to Baseline Gurobi’s
410.2 minutes, leading to a negative travel time gap of -
1.86%. Despite Baseline Gurobi utilizing the entire time
limit, it exhibited a higher MIP Gap of 19.04%, while
C3-Gurobi maintained a minimal MIP gap of 0.98% with
a runtime of 24.5 seconds. In the medium mixing case,
Baseline Gurobi had a slightly better travel time cost of
426.9 minutes compared to C3-Gurobi’s 432.2 minutes,
resulting in a travel time gap of 1.22%. Yet, Baseline
Gurobi’s MIP gap increased to 24.31%, and it reached the
time limit without further improvements. C3-Gurobi, on
the other hand, provided its solution in approximately 1.1
seconds with a negligible MIP gap of 0.82%. Under high
mixing, C3-Gurobi achieved a lower travel time of 394.3
minutes compared to Baseline Gurobi’s 426.5 minutes,
leading to a substantial negative travel time gap of -8.17%
due to Baseline Gurobi’s higher MIP gap of 21.39% and
full runtime indicating difficulty in finding better solutions
under the time constraint, whereas C3-Gurobi delivered its
solution in 15.4 seconds.

Temporal scatteredness: The computational results, as
shown in Figure 6, reveal that varying levels of temporal
scatteredness in pickup and delivery points impact the
performance of both the Baseline Gurobi solver and the
C3-Gurobi algorithm, especially under Baseline Gurobi’s
(3600-second) runtime limit. In the low temporal scat-
teredness scenario, C3-Gurobi serves the orders in a lower
travel time cost of 432.3 minutes compared to Baseline
Gurobi’s 443.7 minutes, resulting in a travel time gap of
-2.63%, while completing the computation in just 24.9
seconds versus Baseline Gurobi’s full runtime. As temporal
scatteredness increases, C3-Gurobi continued to serve the
orders with a travel time of 590.0 minutes versus 599.7
minutes, leading to a negative travel time gap of -1.63%. In

Fig. 5: Comparison of travel time cost, travel time discrepancy,
MIP optimality gap, and runtime for the C3-Gurobi algorithm
versus the exact approach in the mixed pickups and deliveries
test case.

Fig. 6: Temporal scatteredness metric: comparison of travel time
cost, travel time discrepancy, earliness, and tardiness for C3-
Gurobi across various scenarios.

the medium temporal scatteredness case, Baseline Gurobi
completed the orders with a slightly better travel time of
556.6 minutes compared to C3-Gurobi’s 570.8 minutes,
resulting in a travel time gap of 1.22%; however, Baseline
Gurobi incurred significant tardiness and earliness, leading
to a higher total cost of 693.0 minutes, while C3-Gurobi
maintained a negligible MIP gap of 1.66% with a runtime
of 135.4 seconds. Under high temporal scatteredness, C3-
Gurobi reduced the travel time to 467.0 minutes compared
to Baseline Gurobi’s 489.6 minutes, achieving a substantial
negative travel time gap of -4.84%, and delivered its
solution faster compared to Baseline Gurobi’s full runtime.

Overall, our experimental results demonstrate that the
proposed C3-Gurobi algorithm significantly enhances com-
putational efficiency compared to the Baseline Gurobi
(without clustering), consistently delivering solutions
within seconds versus monolithic Gurobi’s hour-long run-
time. While Baseline Gurobi occasionally achieved slightly
lower travel time costs in low spatial density scenarios,
C3-Gurobi maintained competitive travel time gaps and
minimal MIP gaps across all test cases. This efficiency
arises from the clustering approach, where each cluster
is solved using exact methods. However, as cluster sizes
grow, the runtime of these exact solvers within each cluster
may increase, potentially impacting overall performance.
Figure 7 exemplifies a typical routing solution, demon-
strating how the clustering approach can streamline the

9

Fig. 7: Visualization of routes for 15 orders, illustrating the
spatial distribution of drivers and associated pickup and delivery
locations under different time window constraints such as earliest
start time, latest end time, and service duration.

assignment of vehicles, orders, and routes. This combi-
nation of near-optimal performance with markedly lower
computation times underscores the C3-Gurobi’s potential
as a scalable solution for real-world logistics challenges,
where balancing speed and accuracy is essential.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper addresses the Multi-Pickup and Delivery
Problem with Time Windows by employing advanced
capacity-constrained clustering techniques alongside tra-
ditional optimization methods. Our experimental analysis
demonstrated the effectiveness of our heuristic compared
to exact solutions, achieving near-optimal results with
significantly reduced computational times.

The heuristic’s capability to effectively manage spatial
density, temporal scatteredness, and the integration of pick-
ups and deliveries underscores its practical applicability
to real-world logistics scenarios. It highlights the poten-
tial of integrating heuristic approaches with operational
constraints to improve efficiency and responsiveness in
transportation systems. Looking ahead, the integration of
graph-aware deep reinforcement learning offers a promis-
ing avenue for future research. By applying this technique
to optimize routing decisions within each cluster, we can
potentially enhance the speed and accuracy of the solution
process. This approach would leverage the structural and
temporal data of routing problems to rapidly generate high-
quality solutions, thereby accommodating larger and more
dynamic datasets. Additionally, the adoption of adaptive
algorithms that can dynamically adjust to changing envi-
ronments and real-time data feeds will be crucial in enhanc-
ing the responsiveness of logistics systems to unforeseen
changes in demand and vehicle availability. Additionally,
exploring Multi-Agent Reinforcement Learning (MARL) to
address the entire MPMDPTW problem represents another
research direction. MARL can enable multiple autonomous
agents to collaboratively learn optimal routing strategies,
ensuring that orders are assigned correctly and efficiently,
minimizing the total costs by dynamically adapting to
real-time data, and reducing the impact of incorrect order
assignments. This work contributes to the field of logistics

Fig. 8: Schematic of equivalent minimum cost flow formulation
for problem (P1’).

Fig. 9: Schematic of equivalent minimum cost flow formulation
for problem (P2’).

and transportation by offering a scalable and efficient solu-
tion to complex routing problems, challenging traditional
methods with a heuristic that balances computational speed
with solution quality.

APPENDIX

In this appendix, we provide Figures 8 and 9 to help
understand the equivalent minimum cost flow formulation
presented in Section IV.

REFERENCES

[1] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery
problem with time windows,” European Journal of Operational
Research, vol. 54, no. 1, pp. 7–22, 1991.

[2] M. Gendreau, A. Hertz, and G. Laporte, “A tabu search heuristic for
the vehicle routing problem,” Management Science, vol. 40, no. 10,
pp. 1276–1290, 1994.

[3] M. W. Savelsbergh and M. Sol, “The general pickup and delivery
problem,” Transportation Science, vol. 29, no. 1, pp. 17–29, 1995.

[4] S. Mitrović-Minić, R. Krishnamurti, and G. Laporte, “Double-
horizon based heuristics for the dynamic pickup and delivery
problem with time windows,” Transportation Research Part B:
Methodological, vol. 38, no. 8, pp. 669–685, 2004.

[5] Q. Lu and M. M. Dessouky, “A new insertion-based construction
heuristic for solving the pickup and delivery problem with time
windows,” European Journal of Operational Research, vol. 175,
no. 2, pp. 672–687, 2006.

[6] H. Li and A. Lim, “A metaheuristic for the pickup and delivery
problem with time windows,” in Proceedings 13th IEEE Interna-
tional Conference on Tools with Artificial Intelligence. ICTAI 2001.
IEEE, 2001, pp. 160–167.

[7] N. Agatz, A. Campbell, M. Fleischmann, and M. Savelsbergh,
“Time slot management in attended home delivery,” Transportation
Science, vol. 45, no. 3, pp. 435–449, 2011.

[8] M. W. Ulmer, D. C. Mattfeld, and F. Köster, “Budgeting time
for dynamic vehicle routing with stochastic customer requests,”
Transportation Science, vol. 52, no. 1, pp. 20–37, 2018.

10

[9] Y. Wang, K. Assogba, J. Fan, M. Xu, Y. Liu, and H. Wang, “Multi-
depot green vehicle routing problem with shared transportation
resource: Integration of time-dependent speed and piecewise penalty
cost,” Journal of Cleaner Production, vol. 232, pp. 12–29, 2019.

[10] D. S. Mankowska, F. Meisel, and C. Bierwirth, “The home health
care routing and scheduling problem with interdependent services,”
Health Care Management Science, vol. 17, pp. 15–30, 2014.

[11] J. A. Nasir and Y.-H. Kuo, “A decision support framework for
home health care transportation with simultaneous multi-vehicle
routing and staff scheduling synchronization,” Decision Support
Systems, vol. 138, p. 113361, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167923620301160

[12] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for
dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295–303, 2012.

[13] M. Li, Z. Qin, Y. Jiao, Y. Yang, J. Wang, C. Wang, G. Wu, and J. Ye,
“Efficient ridesharing order dispatching with mean field multi-agent
reinforcement learning,” in The World Wide Web Conference, 2019,
pp. 983–994.

[14] Z. T. Qin, H. Zhu, and J. Ye, “Reinforcement learning for rideshar-
ing: An extended survey,” Transportation Research Part C: Emerg-
ing Technologies, vol. 144, p. 103852, 2022.

[15] J. K. Lenstra and A. R. Kan, “Complexity of vehicle routing and
scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[16] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management Science, vol. 6, no. 1, pp. 80–91, 1959.

[17] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central
depot to a number of delivery points,” Operations Research, vol. 12,
no. 4, pp. 568–581, 1964.

[18] J.-F. Cordeau and G. Laporte, “A tabu search heuristic for the
static multi-vehicle dial-a-ride problem,” Transportation Research
Part B: Methodological, vol. 37, no. 6, pp. 579–594, 2003.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0191261502000450

[19] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi, “An exact
algorithm for the capacitated vehicle routing problem based on a
two-commodity network flow formulation,” Operations Research,
vol. 52, no. 5, pp. 723–738, 2004.

[20] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006.

[21] M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle
routing,” European Journal of Operational Research, vol. 88, no. 1,
pp. 3–12, 1996. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/037722179500050X

[22] G. Laporte, F. Louveaux, and H. Mercure, “The vehicle rout-
ing problem with stochastic travel times,” Transportation Science,
vol. 26, no. 3, pp. 161–170, 1992.

[23] J.-F. Cordeau and G. Laporte, “A tabu search algorithm for the site
dependent vehicle routing problem with time windows,” INFOR:
Information Systems and Operational Research, vol. 39, no. 3, pp.
292–298, 2001.

[24] J.-Y. Potvin and J.-M. Rousseau, “A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows,”
European Journal of Operational Research, vol. 66, no. 3, pp. 331–
340, 1993.

[25] I. H. Osman and N. A. Wassan, “A reactive tabu search meta-
heuristic for the vehicle routing problem with back-hauls,” Journal
of Scheduling, vol. 5, no. 4, pp. 263–285, 2002.

[26] L. Paquete, M. Chiarandini, and T. Stützle, “Pareto local optimum
sets in the biobjective traveling salesman problem: An experimental
study,” in Metaheuristics for Multiobjective Optimization. Springer,
2004, pp. 177–199.

[27] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Parallel and hybrid
models for multi-objective optimization: Application to the vehicle
routing problem,” in International Conference on Parallel Problem
Solving from Nature. Springer, 2002, pp. 271–280.

[28] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neu-
ral combinatorial optimization with reinforcement learning,” arXiv
preprint arXiv:1611.09940, 2016.

[29] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
Eds., vol. 28. Curran Associates, Inc., 2015. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf

[30] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang, “Het-
erogeneous attentions for solving pickup and delivery problem

via deep reinforcement learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 3, pp. 2306–2315, 2021.

[31] X. Li, W. Luo, M. Yuan, J. Wang, J. Lu, J. Wang, J. Lü, and J. Zeng,
“Learning to optimize industry-scale dynamic pickup and delivery
problems,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 2511–2522.

[32] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” Advances in
Neural Information Processing Systems, vol. 31, 2018.

[33] W. Kool, H. van Hoof, J. Gromicho, and M. Welling, “Deep
policy dynamic programming for vehicle routing problems,” in
International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. Springer, 2022,
pp. 190–213.

[34] E. R. Hruschka, R. J. Campello, A. A. Freitas et al., “A survey
of evolutionary algorithms for clustering,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (applications and reviews),
vol. 39, no. 2, pp. 133–155, 2009.

[35] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A general-
ized convergence theorem and characterization of local optimality,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
no. 1, pp. 81–87, 1984.

[36] R. Dupas, T. Hsu, and E. Taniguchi, “A clustering-routing approach
for assigning customers to depots in last mile delivery,” Transporta-
tion Research Procedia, vol. 79, pp. 13–20, 2024.

[37] Y. Mo, K. Yang, S. Han, and S. Gupta, “Multi-period heterogeneous
fleet vehicle routing problem with self-pickup point selection: a
last-mile delivery scenario in urban and rural areas,” Annals of
Operations Research, pp. 1–35, 2024.

[38] J. Shi, “Optimization of frozen goods distribution logistics network
based on k-means algorithm and priority classification,” Scientific
Reports, vol. 14, no. 1, p. 22477, 2024.

[39] S. Fatemi-Anaraki, M. Mokhtarzadeh, M. Rabbani, and D. Abdol-
hamidi, “A hybrid of k-means and genetic algorithm to solve a bi-
objective green delivery and pick-up problem,” Journal of Industrial
and Production Engineering, vol. 39, no. 2, pp. 146–157, 2022.

[40] Y. Wang, L. Ran, X. Guan, and Y. Zou, “Multi-depot pickup
and delivery problem with resource sharing,” Journal of Advanced
Transportation, vol. 2021, no. 1, p. 5182989, 2021.

[41] Y. Zhou, R. Xie, T. Zhang, and J. Holguin-Veras, “Joint distribution
center location problem for restaurant industry based on improved
k-means algorithm with penalty,” IEEE Access, vol. 8, pp. 37 746–
37 755, 2020.

[42] T. D. C. Le, D. D. Nguyen, J. Oláh, and M. Pakurár, “Clustering
algorithm for a vehicle routing problem with time windows,” Trans-
port, vol. 37, no. 1, pp. 17–27, 2022.

[43] H. Wang, S. Chen, X. Yin, L. Meng, Z. Wang, and Z. Wang, “A
hybrid fuzzy c-means heuristic approach for two-echelon vehicle
routing with simultaneous pickup and delivery of multi-commodity,”
IEEE Transactions on Fuzzy Systems, 2024.

[44] H. Akeb, A. Bouchakhchoukha, and M. Hifi, “A beam search based
algorithm for the capacitated vehicle routing problem with time
windows,” in 2013 Federated Conference on Computer Science and
Information Systems. IEEE, 2013, pp. 329–336.

[45] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means
clustering,” Microsoft Research, Redmond, vol. 20, no. 0, p. 0, 2000.

[46] SINTEF, “Li & Lim benchmark,” https://www.sintef.no/projectweb/
top/pdptw/li-lim-benchmark/, SINTEF TOP Project.

https://www.sciencedirect.com/science/article/pii/S0167923620301160
https://www.sciencedirect.com/science/article/pii/S0167923620301160
https://www.sciencedirect.com/science/article/pii/S0191261502000450
https://www.sciencedirect.com/science/article/pii/S0191261502000450
https://www.sciencedirect.com/science/article/pii/037722179500050X
https://www.sciencedirect.com/science/article/pii/037722179500050X
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

	Introduction
	Literature Review
	Problem Formulation
	Notation
	Objective Function
	Constraints

	Solution Methodology
	Numerical Simulations
	Numerical Results

	Conclusions and Future Directions
	Appendix
	References

